Multi-modal data cross-domain fusion network for gearbox fault diagnosis under variable operating conditions

计算机科学 情态动词 变量(数学) 领域(数学分析) 断层(地质) 融合 数据挖掘 实时计算 地质学 数学 语言学 数学分析 哲学 地震学 化学 高分子化学
作者
Yongchao Zhang,Jinliang Ding,Yongbo Li,Zhaohui Ren,Ke Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108236-108236 被引量:46
标识
DOI:10.1016/j.engappai.2024.108236
摘要

Gearbox fault diagnosis is a critical aspect of machinery maintenance and reliability, as it ensures the safe and efficient operation of various industrial systems. The cross-domain fault diagnosis method based on transfer learning has been extensively researched to enhance the engineering applications of data-driven methods. Currently, the state-of-the-art gearbox cross-domain fault diagnosis primarily relies on single-modal data, which may not capture the full information needed for robust fault diagnosis under varying conditions. To address this issue, we propose a novel multi-modal data cross-domain fusion network that utilizes vibration signals and thermal images to capture comprehensive information about the gearbox's health conditions. First, one-dimensional and two-dimensional convolutional neural networks are constructed for feature extraction and fusion of multi-modal data. Then, the Maximum Mean Discrepancy loss is introduced to achieve cross-domain feature alignments within the modal. Finally, the cross-modal consistency learning strategy is constructed to enhance the cross-domain diagnosis performance of the model. To validate the effectiveness of the proposed method, we conducted experiments on a real-world gearbox test rig. Experimental results demonstrate that the proposed method is superior to single-modal methods and existing fusion methods in terms of diagnosis performance, proving that the proposed method offers a promising solution for gearbox fault diagnosis in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Erika采纳,获得10
1秒前
2秒前
sun完成签到,获得积分10
2秒前
乐观小蕊发布了新的文献求助10
2秒前
问筠完成签到,获得积分10
3秒前
3秒前
4秒前
Orange应助Wenson采纳,获得10
5秒前
TT完成签到,获得积分10
5秒前
5秒前
Joe发布了新的文献求助10
6秒前
7秒前
7秒前
May发布了新的文献求助10
7秒前
邢文瑞发布了新的文献求助10
7秒前
练习时长两年半应助1111采纳,获得10
7秒前
8秒前
8秒前
飞跃发布了新的文献求助10
8秒前
sonic发布了新的文献求助20
8秒前
curry完成签到 ,获得积分10
8秒前
小二郎应助毛毛虫采纳,获得10
10秒前
10秒前
碧蓝断天完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
乐观小蕊完成签到,获得积分10
13秒前
man完成签到,获得积分10
13秒前
13秒前
共享精神应助1234采纳,获得10
13秒前
SSSShawn发布了新的文献求助10
14秒前
14秒前
充电宝应助淡然的小萱采纳,获得10
14秒前
宁缺毋滥发布了新的文献求助10
16秒前
李健应助May采纳,获得10
16秒前
小章发布了新的文献求助10
16秒前
眯眯眼的宛白完成签到,获得积分20
17秒前
17秒前
玛卡巴卡发布了新的文献求助10
18秒前
胡昕跃发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496