Multi-modal data cross-domain fusion network for gearbox fault diagnosis under variable operating conditions

计算机科学 情态动词 变量(数学) 领域(数学分析) 断层(地质) 融合 数据挖掘 实时计算 地质学 数学分析 语言学 化学 哲学 数学 地震学 高分子化学
作者
Yongchao Zhang,Jinliang Ding,Yongbo Li,Zhaohui Ren,Ke Feng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108236-108236 被引量:84
标识
DOI:10.1016/j.engappai.2024.108236
摘要

Gearbox fault diagnosis is a critical aspect of machinery maintenance and reliability, as it ensures the safe and efficient operation of various industrial systems. The cross-domain fault diagnosis method based on transfer learning has been extensively researched to enhance the engineering applications of data-driven methods. Currently, the state-of-the-art gearbox cross-domain fault diagnosis primarily relies on single-modal data, which may not capture the full information needed for robust fault diagnosis under varying conditions. To address this issue, we propose a novel multi-modal data cross-domain fusion network that utilizes vibration signals and thermal images to capture comprehensive information about the gearbox's health conditions. First, one-dimensional and two-dimensional convolutional neural networks are constructed for feature extraction and fusion of multi-modal data. Then, the Maximum Mean Discrepancy loss is introduced to achieve cross-domain feature alignments within the modal. Finally, the cross-modal consistency learning strategy is constructed to enhance the cross-domain diagnosis performance of the model. To validate the effectiveness of the proposed method, we conducted experiments on a real-world gearbox test rig. Experimental results demonstrate that the proposed method is superior to single-modal methods and existing fusion methods in terms of diagnosis performance, proving that the proposed method offers a promising solution for gearbox fault diagnosis in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李俊枫发布了新的文献求助10
1秒前
hh完成签到,获得积分20
1秒前
111完成签到,获得积分10
1秒前
Atlantis发布了新的文献求助10
2秒前
小马甲应助tclouds采纳,获得10
2秒前
深情安青应助犹豫的宝莹采纳,获得10
3秒前
3秒前
zengyile发布了新的文献求助10
3秒前
4秒前
123发布了新的文献求助10
4秒前
ding应助MM采纳,获得10
4秒前
ll完成签到 ,获得积分10
4秒前
5秒前
CodeCraft应助傲娇书易采纳,获得50
5秒前
6秒前
大模型应助泡面公主采纳,获得10
7秒前
科研通AI2S应助Marciu33采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得20
8秒前
幸福店员发布了新的文献求助10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助qaa2274278941采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
嘞是举仔应助科研通管家采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712710
求助须知:如何正确求助?哪些是违规求助? 5211827
关于积分的说明 15268582
捐赠科研通 4864522
什么是DOI,文献DOI怎么找? 2611551
邀请新用户注册赠送积分活动 1561833
关于科研通互助平台的介绍 1519066