The application of graphic language personalized emotion in graphic design

计算机科学 平面设计 排版 人机交互 卷积神经网络 视觉语言 感觉 面部表情 人工智能 多媒体 自然语言处理 心理学 语言学 艺术 社会心理学 哲学 视觉艺术
作者
Zhenzhen Pan,Hong Pan,Junzhan Zhang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (9): e30180-e30180 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e30180
摘要

Emotion Recognition is the experience of attitude in graphic language expression and composition. People use both verbal and non-verbal behaviours to communicate their emotions. Visual communication and graphic design are always evolving to meet the demands of an increasingly affluent and culturally conscious populace. When graphic designing works, designers should consider their own opinions about related works from the audience's or customer's standpoint so that the emotion between them can resonate. Hence, this study proposes a personalized emotion recognition framework based on convolutional neural networks (PERF-CNN) to create visual content for graphic design. Graphic designers prioritize the logic of showing objects in interactive designs and use visual hierarchy and page layout approaches to respond to users' demands via typography and imagery. This ensures that the user experience is maximized. This research identifies three tiers of emotional thinking: expressive signal, emotional experience, and emotional infiltration, all of which affect graphic design. This article explores the subject of graphic design language and its ways of emotional recognition, as well as the relationship between graphic images, shapes, and feelings. CNN initially extracted expressive features from the user's face images and the poster's visual information. The clustering process categorizes the poster or advertisement images into positive, negative, and neutral classes. Research and applications of graphic design language benefit from the proposed method's experimental results, demonstrating that it outperforms conventional classification approaches in the dataset. In comparison to other popular models, the experimental results demonstrate that the proposed PERF-CNN model improves each of the following: classification accuracy (97.4 %), interaction ratio (95.6 %), emotion recognition ratio (98.9 %), rate of influence of pattern and colour features (94.4 %), and prediction error rate (6.5 %).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子铁发布了新的文献求助10
刚刚
刚刚
sunshine完成签到,获得积分20
1秒前
泥嚎发布了新的文献求助10
3秒前
材料生发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
6秒前
liu完成签到,获得积分20
8秒前
sunshine发布了新的文献求助10
8秒前
Luobing发布了新的文献求助10
8秒前
一奡一完成签到,获得积分10
8秒前
李健的小迷弟应助LP采纳,获得10
9秒前
10秒前
落寞砖家发布了新的文献求助10
11秒前
liu发布了新的文献求助10
12秒前
suer001128完成签到 ,获得积分10
13秒前
14秒前
15秒前
爱静静应助无心的土豆采纳,获得10
15秒前
16秒前
16秒前
文静的宛儿完成签到,获得积分20
17秒前
Lucas应助泥嚎采纳,获得10
17秒前
Jayzie完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
panyu完成签到 ,获得积分10
19秒前
落寞的煎蛋应助swordlee采纳,获得30
19秒前
boya完成签到,获得积分10
21秒前
chenhang1894发布了新的文献求助10
22秒前
DamonChen发布了新的文献求助10
22秒前
22秒前
ningmengcao完成签到,获得积分10
22秒前
23秒前
JamesPei应助WJB采纳,获得30
23秒前
田様应助LJL采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543997
求助须知:如何正确求助?哪些是违规求助? 3121198
关于积分的说明 9346129
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550110
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713174