Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data

索引 计算机科学 INDEL突变 精确性和召回率 结构变异 集合(抽象数据类型) 召回 计算生物学 模式识别(心理学) 人工智能 遗传学 生物 基因 基因组 基因型 单核苷酸多态性 语言学 哲学 程序设计语言
作者
Shunichi Kosugi,Chikashi Terao
出处
期刊:Human genome variation [Springer Nature]
卷期号:11 (1) 被引量:2
标识
DOI:10.1038/s41439-024-00276-x
摘要

Abstract Short- and long-read sequencing technologies are routinely used to detect DNA variants, including SNVs, indels, and structural variations (SVs). However, the differences in the quality and quantity of variants detected between short- and long-read data are not fully understood. In this study, we comprehensively evaluated the variant calling performance of short- and long-read-based SNV, indel, and SV detection algorithms (6 for SNVs, 12 for indels, and 13 for SVs) using a novel evaluation framework incorporating manual visual inspection. The results showed that indel-insertion calls greater than 10 bp were poorly detected by short-read-based detection algorithms compared to long-read-based algorithms; however, the recall and precision of SNV and indel-deletion detection were similar between short- and long-read data. The recall of SV detection with short-read-based algorithms was significantly lower in repetitive regions, especially for small- to intermediate-sized SVs, than that detected with long-read-based algorithms. In contrast, the recall and precision of SV detection in nonrepetitive regions were similar between short- and long-read data. These findings suggest the need for refined strategies, such as incorporating multiple variant detection algorithms, to generate a more complete set of variants using short-read data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z729Mn发布了新的文献求助10
1秒前
独特跳跳糖完成签到 ,获得积分10
2秒前
2秒前
hyl-tcm完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
LL发布了新的文献求助10
5秒前
xavier发布了新的文献求助10
5秒前
5秒前
孙意冉发布了新的文献求助10
6秒前
7秒前
hd发布了新的文献求助10
8秒前
9秒前
kakainho完成签到,获得积分10
9秒前
9秒前
坚定寒松完成签到 ,获得积分10
10秒前
10秒前
沈迎南发布了新的文献求助10
10秒前
甜甜寄凡发布了新的文献求助10
11秒前
Dr.feng完成签到,获得积分10
12秒前
jihenyouai0213完成签到,获得积分10
12秒前
可靠橘子发布了新的文献求助10
13秒前
等待的mango应助群众采纳,获得10
14秒前
lijunlhc完成签到,获得积分10
14秒前
冷酷的冰夏完成签到,获得积分10
14秒前
xxfsx应助孤独的万言采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
凯凯发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
浮游应助浮浮世世采纳,获得20
19秒前
19秒前
可靠橘子完成签到,获得积分10
19秒前
19秒前
21秒前
英俊的铭应助落花生采纳,获得10
22秒前
深情安青应助傲娇林采纳,获得10
22秒前
Author发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474