Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data

索引 计算机科学 INDEL突变 精确性和召回率 结构变异 集合(抽象数据类型) 召回 计算生物学 模式识别(心理学) 人工智能 遗传学 生物 基因 基因组 基因型 程序设计语言 单核苷酸多态性 哲学 语言学
作者
Shunichi Kosugi,Chikashi Terao
出处
期刊:Human genome variation [Springer Nature]
卷期号:11 (1) 被引量:2
标识
DOI:10.1038/s41439-024-00276-x
摘要

Abstract Short- and long-read sequencing technologies are routinely used to detect DNA variants, including SNVs, indels, and structural variations (SVs). However, the differences in the quality and quantity of variants detected between short- and long-read data are not fully understood. In this study, we comprehensively evaluated the variant calling performance of short- and long-read-based SNV, indel, and SV detection algorithms (6 for SNVs, 12 for indels, and 13 for SVs) using a novel evaluation framework incorporating manual visual inspection. The results showed that indel-insertion calls greater than 10 bp were poorly detected by short-read-based detection algorithms compared to long-read-based algorithms; however, the recall and precision of SNV and indel-deletion detection were similar between short- and long-read data. The recall of SV detection with short-read-based algorithms was significantly lower in repetitive regions, especially for small- to intermediate-sized SVs, than that detected with long-read-based algorithms. In contrast, the recall and precision of SV detection in nonrepetitive regions were similar between short- and long-read data. These findings suggest the need for refined strategies, such as incorporating multiple variant detection algorithms, to generate a more complete set of variants using short-read data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滔滔江水完成签到,获得积分10
刚刚
月夜花朝完成签到 ,获得积分10
刚刚
火星上易真完成签到 ,获得积分10
1秒前
深情安青应助王贤平采纳,获得10
3秒前
sswbzh应助12采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
长情笑柳应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
TT001发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
长情笑柳应助科研通管家采纳,获得10
5秒前
fufu发布了新的文献求助10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
yanting完成签到,获得积分10
5秒前
小伊完成签到,获得积分20
5秒前
传奇3应助科研通管家采纳,获得20
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109