Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data

索引 计算机科学 INDEL突变 精确性和召回率 结构变异 集合(抽象数据类型) 召回 计算生物学 模式识别(心理学) 人工智能 遗传学 生物 基因 基因组 基因型 程序设计语言 单核苷酸多态性 哲学 语言学
作者
Shunichi Kosugi,Chikashi Terao
出处
期刊:Human genome variation [Springer Nature]
卷期号:11 (1) 被引量:2
标识
DOI:10.1038/s41439-024-00276-x
摘要

Abstract Short- and long-read sequencing technologies are routinely used to detect DNA variants, including SNVs, indels, and structural variations (SVs). However, the differences in the quality and quantity of variants detected between short- and long-read data are not fully understood. In this study, we comprehensively evaluated the variant calling performance of short- and long-read-based SNV, indel, and SV detection algorithms (6 for SNVs, 12 for indels, and 13 for SVs) using a novel evaluation framework incorporating manual visual inspection. The results showed that indel-insertion calls greater than 10 bp were poorly detected by short-read-based detection algorithms compared to long-read-based algorithms; however, the recall and precision of SNV and indel-deletion detection were similar between short- and long-read data. The recall of SV detection with short-read-based algorithms was significantly lower in repetitive regions, especially for small- to intermediate-sized SVs, than that detected with long-read-based algorithms. In contrast, the recall and precision of SV detection in nonrepetitive regions were similar between short- and long-read data. These findings suggest the need for refined strategies, such as incorporating multiple variant detection algorithms, to generate a more complete set of variants using short-read data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助fafafa采纳,获得10
1秒前
2秒前
科研通AI6应助alex采纳,获得10
3秒前
李健的小迷弟应助炎燚采纳,获得10
4秒前
闪闪的雨柏完成签到,获得积分10
5秒前
科研通AI6应助shengsheng采纳,获得10
6秒前
6秒前
科研通AI2S应助weixin112233采纳,获得10
6秒前
酷波er应助May采纳,获得10
6秒前
7秒前
7秒前
爱吃米线发布了新的文献求助10
7秒前
郑浩龙完成签到,获得积分10
7秒前
7秒前
Jane_Xin发布了新的文献求助10
8秒前
79完成签到,获得积分10
9秒前
ll完成签到,获得积分10
9秒前
9秒前
小卡拉米应助黎明采纳,获得10
9秒前
XiaoYuuu完成签到,获得积分10
9秒前
FashionBoy应助喂喂喂采纳,获得10
10秒前
Lei完成签到,获得积分10
10秒前
饭米粒发布了新的文献求助10
13秒前
13秒前
魔音甜菜完成签到,获得积分10
13秒前
ankang完成签到,获得积分10
13秒前
13秒前
14秒前
度帕明完成签到,获得积分10
15秒前
Jasper应助粗心的无剑采纳,获得10
15秒前
FashionBoy应助甜蜜的松思采纳,获得10
15秒前
16秒前
迅速的谷菱关注了科研通微信公众号
16秒前
16秒前
ankang发布了新的文献求助10
17秒前
17秒前
liliping发布了新的文献求助10
17秒前
加百莉完成签到,获得积分10
18秒前
lxp完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524