A novel user-generated content-driven and Kano model focused framework to explore the impact mechanism of continuance intention to use mobile APPs

连续性 卡诺模型 计算机科学 产品(数学) 机制(生物学) 结构方程建模 聚类分析 顾客满意度 用户满意度 万维网 人机交互 心理学 人工智能 业务 营销 机器学习 社会心理学 数学 服务质量 哲学 认识论 服务(商务) 几何学
作者
Tong Wang,Wei Wang,Jia Feng,Xianming Fan,Junli Guo,Jianbo Lei
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:157: 108252-108252 被引量:15
标识
DOI:10.1016/j.chb.2024.108252
摘要

User-generated content (UGC), which generates vast amounts of content in real-time through social networks, offers a significant opportunity for mining new knowledge. The survival of information technology products such as mobile APPs (mAPPs) depends on continuance. The exploration of the impact mechanism underlying continuance intention is crucial given the low continued usage of many mAPPs. Mining real-world UGC provides an efficient approach for user experience and product evaluation compared to traditional interviews or surveys. This study proposes a novel UGC-driven, Kano model focused, pipelined framework to automatically identify impact factors and determine the impact mechanism underlying continuance intention. The above method framework involves unsupervised clustering text analysis to identify user needs and product functions from UGC, followed by the construction of a statistical model to explore the relationship between these factors and user satisfaction and dissatisfaction (Kano model). Additionally, a model to distinguish the attributes of factors that significantly affect satisfaction or dissatisfaction is proposed. Finally, user satisfaction and dissatisfaction are used as mediators to build models of continuance and discontinuance intention. Empirical validation of the proposed method is conducted with a case study of mobile health apps, involving the mining of 86,423 user reviews and structural equation modeling based on 1,025 user responses. The results indicate that the UGC-driven method effectively explores the impact mechanism of continuance and discontinuance intention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣慰青枫发布了新的文献求助10
刚刚
余红完成签到,获得积分10
1秒前
1秒前
1秒前
Ww完成签到,获得积分10
1秒前
2623196525发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
孤独蘑菇发布了新的文献求助10
2秒前
2秒前
2秒前
滴滴答答完成签到 ,获得积分10
3秒前
阿龙发布了新的文献求助10
3秒前
3秒前
4秒前
毛毛发布了新的文献求助20
4秒前
斯文败类应助123456采纳,获得10
6秒前
张兴华发布了新的文献求助10
6秒前
Hypocrisy发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Molly完成签到,获得积分10
8秒前
小小孙发布了新的文献求助10
8秒前
8秒前
实验一定顺应助星云采纳,获得10
9秒前
9秒前
gaozheng完成签到,获得积分10
9秒前
9秒前
123完成签到,获得积分10
10秒前
10秒前
pzh完成签到,获得积分10
10秒前
爆米花应助棋士采纳,获得10
10秒前
10秒前
wanci应助Mengxin采纳,获得10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692994
求助须知:如何正确求助?哪些是违规求助? 5091092
关于积分的说明 15210459
捐赠科研通 4850168
什么是DOI,文献DOI怎么找? 2601565
邀请新用户注册赠送积分活动 1553403
关于科研通互助平台的介绍 1511404