A novel user-generated content-driven and Kano model focused framework to explore the impact mechanism of continuance intention to use mobile APPs

连续性 卡诺模型 计算机科学 产品(数学) 机制(生物学) 结构方程建模 聚类分析 顾客满意度 用户满意度 万维网 人机交互 心理学 人工智能 业务 营销 机器学习 社会心理学 数学 服务质量 哲学 认识论 服务(商务) 几何学
作者
Tong Wang,Wei Wang,Jia Feng,Xianming Fan,Junli Guo,Jianbo Lei
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:157: 108252-108252 被引量:15
标识
DOI:10.1016/j.chb.2024.108252
摘要

User-generated content (UGC), which generates vast amounts of content in real-time through social networks, offers a significant opportunity for mining new knowledge. The survival of information technology products such as mobile APPs (mAPPs) depends on continuance. The exploration of the impact mechanism underlying continuance intention is crucial given the low continued usage of many mAPPs. Mining real-world UGC provides an efficient approach for user experience and product evaluation compared to traditional interviews or surveys. This study proposes a novel UGC-driven, Kano model focused, pipelined framework to automatically identify impact factors and determine the impact mechanism underlying continuance intention. The above method framework involves unsupervised clustering text analysis to identify user needs and product functions from UGC, followed by the construction of a statistical model to explore the relationship between these factors and user satisfaction and dissatisfaction (Kano model). Additionally, a model to distinguish the attributes of factors that significantly affect satisfaction or dissatisfaction is proposed. Finally, user satisfaction and dissatisfaction are used as mediators to build models of continuance and discontinuance intention. Empirical validation of the proposed method is conducted with a case study of mobile health apps, involving the mining of 86,423 user reviews and structural equation modeling based on 1,025 user responses. The results indicate that the UGC-driven method effectively explores the impact mechanism of continuance and discontinuance intention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lris发布了新的文献求助10
1秒前
2秒前
怕黑的无招完成签到,获得积分10
3秒前
zqee发布了新的文献求助10
4秒前
无足鸟完成签到,获得积分10
4秒前
李健的小迷弟应助leo采纳,获得20
4秒前
4秒前
NexusExplorer应助nice_bigday采纳,获得10
4秒前
生椰拿铁不加生椰完成签到 ,获得积分10
5秒前
jerry_x发布了新的文献求助10
5秒前
贪玩半仙发布了新的文献求助10
6秒前
wy.he应助tjxx采纳,获得40
6秒前
6秒前
7秒前
BowieHuang应助linxi采纳,获得10
8秒前
善学以致用应助小鱼采纳,获得10
8秒前
8秒前
Pluto完成签到,获得积分20
9秒前
陈豆豆完成签到,获得积分10
9秒前
上上签完成签到,获得积分10
10秒前
冷傲惜海完成签到,获得积分10
10秒前
海森咸鱼堡完成签到,获得积分10
10秒前
微风发布了新的文献求助10
10秒前
Lucas应助可不是我嘛采纳,获得10
11秒前
田様应助鱼鱼采纳,获得10
11秒前
龙06应助优美的雁丝采纳,获得10
11秒前
脆脆鲨发布了新的文献求助10
11秒前
bcy完成签到,获得积分10
11秒前
11秒前
CipherSage应助自由的山芙采纳,获得10
11秒前
雪白的诺言完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
CodeCraft应助上上签采纳,获得10
16秒前
17秒前
17秒前
111关闭了111文献求助
18秒前
18秒前
18秒前
科研通AI6.1应助τ涛采纳,获得10
18秒前
顾矜应助小番茄采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775738
求助须知:如何正确求助?哪些是违规求助? 5625743
关于积分的说明 15439619
捐赠科研通 4908043
什么是DOI,文献DOI怎么找? 2641067
邀请新用户注册赠送积分活动 1588822
关于科研通互助平台的介绍 1543705