A novel user-generated content-driven and Kano model focused framework to explore the impact mechanism of continuance intention to use mobile APPs

连续性 卡诺模型 计算机科学 产品(数学) 机制(生物学) 结构方程建模 聚类分析 顾客满意度 用户满意度 万维网 人机交互 心理学 人工智能 业务 营销 机器学习 社会心理学 数学 服务质量 哲学 认识论 服务(商务) 几何学
作者
Tong Wang,Wei Wang,Jia Feng,Xianming Fan,Junli Guo,Jianbo Lei
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:157: 108252-108252 被引量:15
标识
DOI:10.1016/j.chb.2024.108252
摘要

User-generated content (UGC), which generates vast amounts of content in real-time through social networks, offers a significant opportunity for mining new knowledge. The survival of information technology products such as mobile APPs (mAPPs) depends on continuance. The exploration of the impact mechanism underlying continuance intention is crucial given the low continued usage of many mAPPs. Mining real-world UGC provides an efficient approach for user experience and product evaluation compared to traditional interviews or surveys. This study proposes a novel UGC-driven, Kano model focused, pipelined framework to automatically identify impact factors and determine the impact mechanism underlying continuance intention. The above method framework involves unsupervised clustering text analysis to identify user needs and product functions from UGC, followed by the construction of a statistical model to explore the relationship between these factors and user satisfaction and dissatisfaction (Kano model). Additionally, a model to distinguish the attributes of factors that significantly affect satisfaction or dissatisfaction is proposed. Finally, user satisfaction and dissatisfaction are used as mediators to build models of continuance and discontinuance intention. Empirical validation of the proposed method is conducted with a case study of mobile health apps, involving the mining of 86,423 user reviews and structural equation modeling based on 1,025 user responses. The results indicate that the UGC-driven method effectively explores the impact mechanism of continuance and discontinuance intention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
2秒前
小蘑菇应助刘言采纳,获得10
4秒前
4秒前
搞怪山晴发布了新的文献求助10
4秒前
6秒前
JamesPei应助直率的问筠采纳,获得10
7秒前
朻安完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
星辰大海应助黑YA采纳,获得10
9秒前
10秒前
chenhouhan发布了新的文献求助20
10秒前
11秒前
11秒前
leez发布了新的文献求助10
12秒前
哎呦你干嘛完成签到,获得积分20
12秒前
Su发布了新的文献求助10
13秒前
pluto应助独特的绮山采纳,获得10
13秒前
wanci应助星星采纳,获得10
14秒前
14秒前
cetomacrogol完成签到,获得积分10
14秒前
15秒前
感动的小懒虫完成签到,获得积分20
15秒前
15秒前
哈哈哈完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
ybybyb1213发布了新的文献求助30
16秒前
yomi完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
热心雪一完成签到 ,获得积分10
19秒前
19秒前
pluto应助平头张采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
liukanhai完成签到,获得积分10
20秒前
zzgpku应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595