Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle

计算机科学 目标检测 特征(语言学) 人工智能 最小边界框 卷积(计算机科学) 过程(计算) 骨干网 模式识别(心理学) 光流 计算机视觉 像素 行人检测 帧(网络) 特征提取 图像(数学) 人工神经网络 行人 计算机网络 电信 哲学 语言学 运输工程 工程类 操作系统
作者
Shizun Sun,Bo Mo,Junwei Xu,Dawei Li,Jie Zhao,Shuo Han
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:588: 127685-127685 被引量:32
标识
DOI:10.1016/j.neucom.2024.127685
摘要

The detection of infrared moving small objects faces significant challenges in the field of object detection for air vehicles. These types of objects usually occupy a small number of pixels in an infrared image, resulting in limited feature information, considerable feature loss, low recognition accuracy, and various challenges in single-frame detection. To address these challenges, this paper proposes an efficient multi-input method named Multi-YOLOv8, which is based on the YOLOv8s model. The proposed method uses current frames as a primary input and incorporates optical flow processing images and background suppression images as auxiliary inputs to improve detection performance. In addition, an improved method is developed for optical flow computations, named the pyramidal weight-momentum Horn–Schunck (PWMHS) method, which can process optical flows efficiently and precisely. An improved version of the Wise-IoU (WIoU) v3, referred to as α⁎-WIoU v3, is proposed as a bounding box regression (BBR) loss function to optimize the YOLOv8 network. Further, the BiFormer module and lightweight convolution GSConv are introduced to improve the attention to key information for the objects and balance the computational cost and detection performance, respectively. Moreover, a small object detection layer is added the YOLOv8 network to improve the capability for small object detection. Finally, a warming-up training method that can reduce the dependency on auxiliary inputs and ensure model stability in case of auxiliary input failures is developed. The results of the comprehensive experiments on an open-access dataset reveal that the proposed model outperforms the mainstream models in overall performance. The proposed method can significantly enhance the detection ability of infrared moving small objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lwj完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
皮皮团完成签到 ,获得积分10
2秒前
3秒前
舒心衣发布了新的文献求助10
3秒前
中海完成签到,获得积分10
3秒前
ludong_0完成签到,获得积分10
3秒前
kanglan完成签到,获得积分10
3秒前
健康富裕完成签到 ,获得积分10
4秒前
JingP完成签到,获得积分10
4秒前
任全强完成签到,获得积分10
5秒前
酷波er应助yyy采纳,获得10
5秒前
勤恳的仰完成签到,获得积分10
6秒前
淡淡从阳发布了新的文献求助20
6秒前
霍霍完成签到 ,获得积分10
7秒前
yana应助Pepsi采纳,获得30
7秒前
7秒前
haha完成签到,获得积分10
8秒前
琢钰发布了新的文献求助10
9秒前
Rondab应助青青草采纳,获得10
11秒前
nice1025发布了新的文献求助10
11秒前
危机的毛衣完成签到,获得积分10
11秒前
天马行空完成签到,获得积分10
11秒前
小柿子完成签到,获得积分10
11秒前
niuniu完成签到 ,获得积分10
11秒前
agnway发布了新的文献求助10
12秒前
真实的新瑶完成签到,获得积分10
13秒前
mm完成签到,获得积分10
14秒前
无语的外套完成签到,获得积分10
14秒前
MM完成签到,获得积分10
14秒前
巴乔完成签到,获得积分10
15秒前
hugebear完成签到,获得积分0
16秒前
直率钢笔完成签到,获得积分10
16秒前
飞飞飞完成签到,获得积分10
16秒前
趙途嘵生完成签到,获得积分10
17秒前
坚定青柏完成签到,获得积分10
18秒前
orangelion完成签到,获得积分10
18秒前
thuuu完成签到,获得积分10
18秒前
哈哈完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027