Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle

计算机科学 目标检测 特征(语言学) 人工智能 最小边界框 卷积(计算机科学) 过程(计算) 骨干网 模式识别(心理学) 光流 计算机视觉 像素 行人检测 帧(网络) 特征提取 图像(数学) 人工神经网络 行人 计算机网络 电信 哲学 语言学 运输工程 工程类 操作系统
作者
Shizun Sun,Bo Mo,Jun-Wei Xu,Dawei Li,Jie Zhao,Shuo Han
出处
期刊:Neurocomputing [Elsevier]
卷期号:588: 127685-127685 被引量:21
标识
DOI:10.1016/j.neucom.2024.127685
摘要

The detection of infrared moving small objects faces significant challenges in the field of object detection for air vehicles. These types of objects usually occupy a small number of pixels in an infrared image, resulting in limited feature information, considerable feature loss, low recognition accuracy, and various challenges in single-frame detection. To address these challenges, this paper proposes an efficient multi-input method named Multi-YOLOv8, which is based on the YOLOv8s model. The proposed method uses current frames as a primary input and incorporates optical flow processing images and background suppression images as auxiliary inputs to improve detection performance. In addition, an improved method is developed for optical flow computations, named the pyramidal weight-momentum Horn–Schunck (PWMHS) method, which can process optical flows efficiently and precisely. An improved version of the Wise-IoU (WIoU) v3, referred to as α⁎-WIoU v3, is proposed as a bounding box regression (BBR) loss function to optimize the YOLOv8 network. Further, the BiFormer module and lightweight convolution GSConv are introduced to improve the attention to key information for the objects and balance the computational cost and detection performance, respectively. Moreover, a small object detection layer is added the YOLOv8 network to improve the capability for small object detection. Finally, a warming-up training method that can reduce the dependency on auxiliary inputs and ensure model stability in case of auxiliary input failures is developed. The results of the comprehensive experiments on an open-access dataset reveal that the proposed model outperforms the mainstream models in overall performance. The proposed method can significantly enhance the detection ability of infrared moving small objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助ABC采纳,获得10
1秒前
阔达灭绝发布了新的文献求助10
2秒前
penguin2020完成签到,获得积分10
2秒前
Flechozo发布了新的文献求助10
3秒前
研友_VZG7GZ应助DouDou采纳,获得10
3秒前
3秒前
3秒前
独特的绿蝶完成签到,获得积分10
4秒前
大模型应助咩咩媛采纳,获得10
4秒前
YBR发布了新的文献求助100
4秒前
矮小的城发布了新的文献求助50
4秒前
传奇3应助Bellala采纳,获得10
4秒前
allzd发布了新的文献求助30
5秒前
科研通AI5应助白方明采纳,获得10
5秒前
韶华发布了新的文献求助10
5秒前
Echo发布了新的文献求助20
6秒前
将1发布了新的文献求助10
6秒前
Alone发布了新的文献求助10
6秒前
无可无不可完成签到,获得积分10
6秒前
Gonboo完成签到,获得积分10
7秒前
ying完成签到,获得积分20
7秒前
8秒前
情怀应助北方采纳,获得10
8秒前
9秒前
娃娃发布了新的文献求助10
9秒前
小臭屁完成签到,获得积分20
9秒前
在水一方应助akim采纳,获得10
9秒前
10秒前
111完成签到,获得积分10
10秒前
ying发布了新的文献求助10
10秒前
一个小菜鸡完成签到,获得积分10
11秒前
11秒前
斯文败类应助Milesma采纳,获得10
11秒前
尾巴尖的月光完成签到,获得积分10
11秒前
12秒前
zjj完成签到,获得积分10
13秒前
14秒前
大气小新完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助10
15秒前
姜月发布了新的文献求助10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481607
求助须知:如何正确求助?哪些是违规求助? 3071658
关于积分的说明 9123400
捐赠科研通 2763408
什么是DOI,文献DOI怎么找? 1516476
邀请新用户注册赠送积分活动 701579
科研通“疑难数据库(出版商)”最低求助积分说明 700426