Multi-YOLOv8: An infrared moving small object detection model based on YOLOv8 for air vehicle

计算机科学 目标检测 特征(语言学) 人工智能 最小边界框 卷积(计算机科学) 过程(计算) 骨干网 模式识别(心理学) 光流 计算机视觉 像素 行人检测 帧(网络) 特征提取 图像(数学) 人工神经网络 行人 哲学 工程类 运输工程 操作系统 电信 语言学 计算机网络
作者
Shizun Sun,Bo Mo,Junwei Xu,Dawei Li,Jie Zhao,Shuo Han
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:588: 127685-127685 被引量:32
标识
DOI:10.1016/j.neucom.2024.127685
摘要

The detection of infrared moving small objects faces significant challenges in the field of object detection for air vehicles. These types of objects usually occupy a small number of pixels in an infrared image, resulting in limited feature information, considerable feature loss, low recognition accuracy, and various challenges in single-frame detection. To address these challenges, this paper proposes an efficient multi-input method named Multi-YOLOv8, which is based on the YOLOv8s model. The proposed method uses current frames as a primary input and incorporates optical flow processing images and background suppression images as auxiliary inputs to improve detection performance. In addition, an improved method is developed for optical flow computations, named the pyramidal weight-momentum Horn–Schunck (PWMHS) method, which can process optical flows efficiently and precisely. An improved version of the Wise-IoU (WIoU) v3, referred to as α⁎-WIoU v3, is proposed as a bounding box regression (BBR) loss function to optimize the YOLOv8 network. Further, the BiFormer module and lightweight convolution GSConv are introduced to improve the attention to key information for the objects and balance the computational cost and detection performance, respectively. Moreover, a small object detection layer is added the YOLOv8 network to improve the capability for small object detection. Finally, a warming-up training method that can reduce the dependency on auxiliary inputs and ensure model stability in case of auxiliary input failures is developed. The results of the comprehensive experiments on an open-access dataset reveal that the proposed model outperforms the mainstream models in overall performance. The proposed method can significantly enhance the detection ability of infrared moving small objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
是是是应助stoic采纳,获得30
刚刚
1秒前
科研通AI6应助siyisan采纳,获得10
2秒前
123发布了新的文献求助10
3秒前
奋斗瑶发布了新的文献求助30
3秒前
3秒前
4秒前
zeefly7发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助Dan采纳,获得10
4秒前
WANG完成签到,获得积分20
5秒前
科研通AI5应助震动的听安采纳,获得10
5秒前
178完成签到,获得积分10
5秒前
5秒前
小白发布了新的文献求助10
6秒前
不爱喝咖啡完成签到,获得积分10
6秒前
6秒前
所所应助奋斗瑶采纳,获得10
7秒前
豆奶发布了新的文献求助10
8秒前
morena发布了新的文献求助10
8秒前
秋秋完成签到,获得积分10
8秒前
66666发布了新的文献求助10
9秒前
12发布了新的文献求助10
9秒前
昵称231完成签到,获得积分10
9秒前
伍呜呜完成签到,获得积分10
9秒前
10秒前
苏碧萱完成签到,获得积分10
10秒前
10秒前
10秒前
LL发布了新的文献求助30
10秒前
11秒前
何小抽发布了新的文献求助10
11秒前
搜集达人应助游畅采纳,获得10
11秒前
搜集达人应助song采纳,获得10
12秒前
mzc完成签到,获得积分10
12秒前
研友_VZG7GZ应助song采纳,获得10
12秒前
天天快乐应助喜悦觅双采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316