Deep local-to-global feature learning for medical image super-resolution

计算机科学 人工智能 卷积神经网络 像素 计算机视觉 图像分辨率 特征(语言学) 医学影像学 核(代数) 模式识别(心理学) 深度学习 数学 语言学 组合数学 哲学
作者
Wenfeng Huang,Xiangyun Liao,Hao Chen,Ying Hu,Wenjing Jia,Qiong Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102374-102374 被引量:1
标识
DOI:10.1016/j.compmedimag.2024.102374
摘要

Medical images play a vital role in medical analysis by providing crucial information about patients' pathological conditions. However, the quality of these images can be compromised by many factors, such as limited resolution of the instruments, artifacts caused by movements, and the complexity of the scanned areas. As a result, low-resolution (LR) images cannot provide sufficient information for diagnosis. To address this issue, researchers have attempted to apply image super-resolution (SR) techniques to restore the high-resolution (HR) images from their LR counterparts. However, these techniques are designed for generic images, and thus suffer from many challenges unique to medical images. An obvious one is the diversity of the scanned objects; for example, the organs, tissues, and vessels typically appear in different sizes and shapes, and are thus hard to restore with standard convolution neural networks (CNNs). In this paper, we develop a dynamic-local learning framework to capture the details of these diverse areas, consisting of deformable convolutions with adjustable kernel shapes. Moreover, the global information between the tissues and organs is vital for medical diagnosis. To preserve global information, we propose pixel-pixel and patch-patch global learning using a non-local mechanism and a vision transformer (ViT), respectively. The result is a novel CNN-ViT neural network with Local-to-Global feature learning for medical image SR, referred to as LGSR, which can accurately restore both local details and global information. We evaluate our method on six public datasets and one large-scale private dataset, which include five different types of medical images (i.e., Ultrasound, OCT, Endoscope, CT, and MRI images). Experiments show that the proposed method achieves superior PSNR/SSIM and visual performance than the state of the arts with competitive computational costs, measured in network parameters, runtime, and FLOPs. What is more, the experiment conducted on OCT image segmentation for the downstream task demonstrates a significantly positive performance effect of LGSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huang完成签到,获得积分20
1秒前
深情安青应助长情凝丹采纳,获得10
2秒前
3秒前
xixi发布了新的文献求助10
3秒前
Zyk完成签到,获得积分10
5秒前
阳光的芯完成签到,获得积分20
7秒前
7秒前
嗯哼举报饱满一刀求助涉嫌违规
9秒前
MoonFlows应助种一棵星星采纳,获得20
10秒前
welchm完成签到 ,获得积分10
10秒前
白白白发布了新的文献求助10
11秒前
Vanilla完成签到,获得积分10
11秒前
11秒前
鲜艳的沛春完成签到,获得积分10
12秒前
12秒前
乐乐发布了新的文献求助10
13秒前
www完成签到,获得积分10
14秒前
火柴发布了新的文献求助10
14秒前
端庄谷南完成签到 ,获得积分10
15秒前
15秒前
乐乐应助小萝卜采纳,获得10
16秒前
haha发布了新的文献求助10
16秒前
小Q啊啾发布了新的文献求助10
16秒前
Della完成签到 ,获得积分10
20秒前
21秒前
21秒前
常泽洋122完成签到,获得积分10
23秒前
23秒前
共享精神应助小Q啊啾采纳,获得10
23秒前
研友_VZG7GZ应助呆呆小猪采纳,获得10
23秒前
23秒前
24秒前
26秒前
xixi应助火柴采纳,获得10
26秒前
zpp发布了新的文献求助10
27秒前
马香芦完成签到,获得积分10
28秒前
28秒前
无聊的月饼完成签到 ,获得积分10
28秒前
小兵发布了新的文献求助10
29秒前
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919