已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation

人工智能 计算机科学 卷积神经网络 分割 变压器 图像分割 冗余(工程) 模式识别(心理学) 特征提取 电压 物理 量子力学 操作系统
作者
Xiayu Guo,Xian Lin,Xin Yang,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:152: 110491-110491 被引量:18
标识
DOI:10.1016/j.patcog.2024.110491
摘要

Transformer, born for long-range dependency establishment, has been widely studied as a complementary of convolutional neural networks (CNNs) in medical image segmentation. However, existing CNN-Transformer hybrid approaches simply pursue implicit feature fusion without considering their underlying functional overlap. Medical images typically follow stable anatomical structures, making convolution capable of handling most segmentation targets. Without differentiation, enforcing transformers to operate self-attention for all image patches would result in severe redundancy, hindering global feature extraction. In this paper, we propose a simple yet effective hybrid network named UCTNet where transformers only focus on establishing global dependency for CNN's unreliable regions predicted through uncertainty estimation. In this way, CNN and transformer are explicitly fused to minimize functional overlap. More importantly, with fewer regions to handle, UCTNet is of better convergence to learn more robust feature representations for hard examples. Extensive experiments on publicly-available datasets demonstrate the superiority of UCTNet against the state-of-the-art approaches, achieving 89.44%, 92.91%, and 91.15% in Dice similarity coefficient on Synapse, ACDC, and ISIC2018 respectively. Furthermore, such a CNN-Transformer hybrid strategy is highly extendable to other frameworks without introducing additional computational burdens. Code is available at https://github.com/innocence0206/UCTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只要平凡发布了新的文献求助10
刚刚
含蓄梦安完成签到,获得积分10
1秒前
停云濛濛完成签到,获得积分20
3秒前
4秒前
6秒前
7秒前
9秒前
11秒前
ZZICU发布了新的文献求助30
11秒前
ZZICU完成签到,获得积分10
16秒前
共享精神应助赵心宇采纳,获得10
16秒前
六初完成签到 ,获得积分10
17秒前
bxl完成签到,获得积分10
17秒前
19秒前
AlexanderChen完成签到,获得积分20
20秒前
PL发布了新的文献求助10
23秒前
haha完成签到 ,获得积分10
24秒前
Miracle_wh关注了科研通微信公众号
24秒前
AlexanderChen发布了新的文献求助10
24秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
coolkid应助科研通管家采纳,获得10
27秒前
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
28秒前
34秒前
叫一只烤鸭完成签到,获得积分10
34秒前
36秒前
hankai_zeng发布了新的文献求助10
39秒前
彭于晏应助成就的艳一采纳,获得10
46秒前
norman完成签到,获得积分20
47秒前
飘逸映波发布了新的文献求助10
53秒前
追寻海雪关注了科研通微信公众号
55秒前
maedehmmh完成签到,获得积分10
59秒前
文艺的初南完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749