UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation

人工智能 计算机科学 卷积神经网络 分割 变压器 图像分割 冗余(工程) 模式识别(心理学) 特征提取 电压 物理 量子力学 操作系统
作者
Xiayu Guo,Xian Lin,Xin Yang,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:152: 110491-110491 被引量:8
标识
DOI:10.1016/j.patcog.2024.110491
摘要

Transformer, born for long-range dependency establishment, has been widely studied as a complementary of convolutional neural networks (CNNs) in medical image segmentation. However, existing CNN-Transformer hybrid approaches simply pursue implicit feature fusion without considering their underlying functional overlap. Medical images typically follow stable anatomical structures, making convolution capable of handling most segmentation targets. Without differentiation, enforcing transformers to operate self-attention for all image patches would result in severe redundancy, hindering global feature extraction. In this paper, we propose a simple yet effective hybrid network named UCTNet where transformers only focus on establishing global dependency for CNN's unreliable regions predicted through uncertainty estimation. In this way, CNN and transformer are explicitly fused to minimize functional overlap. More importantly, with fewer regions to handle, UCTNet is of better convergence to learn more robust feature representations for hard examples. Extensive experiments on publicly-available datasets demonstrate the superiority of UCTNet against the state-of-the-art approaches, achieving 89.44%, 92.91%, and 91.15% in Dice similarity coefficient on Synapse, ACDC, and ISIC2018 respectively. Furthermore, such a CNN-Transformer hybrid strategy is highly extendable to other frameworks without introducing additional computational burdens. Code is available at https://github.com/innocence0206/UCTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
歪哔巴布完成签到,获得积分10
2秒前
3秒前
3秒前
jbear发布了新的文献求助10
4秒前
歪哔巴布发布了新的文献求助10
5秒前
gj2221423发布了新的文献求助10
5秒前
6秒前
7秒前
研友_VZG7GZ应助开放乐巧采纳,获得10
7秒前
skycrygg521完成签到,获得积分10
7秒前
8秒前
smz发布了新的文献求助30
8秒前
不配.应助小陈要发一区采纳,获得10
9秒前
乐乐应助承宇采纳,获得10
9秒前
学医的小胖子完成签到 ,获得积分10
9秒前
CodeCraft应助七七八八采纳,获得10
10秒前
10秒前
lucky发布了新的文献求助10
10秒前
123完成签到,获得积分20
10秒前
汎影发布了新的文献求助10
10秒前
theyulong发布了新的文献求助10
11秒前
11秒前
12秒前
李爱国应助晨雾采纳,获得10
12秒前
JamesPei应助独白采纳,获得10
12秒前
清秀的凝蝶完成签到,获得积分10
13秒前
13秒前
14秒前
Linyi发布了新的文献求助10
16秒前
斯文败类应助skycrygg采纳,获得10
16秒前
17秒前
liupeng0403117完成签到,获得积分10
17秒前
17秒前
xzc发布了新的文献求助10
18秒前
19秒前
欣慰的夏彤完成签到,获得积分10
20秒前
葛稀完成签到,获得积分10
20秒前
想看不眠日记完成签到,获得积分10
21秒前
sx完成签到,获得积分10
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046