亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation

人工智能 计算机科学 卷积神经网络 分割 变压器 图像分割 冗余(工程) 模式识别(心理学) 特征提取 电压 量子力学 操作系统 物理
作者
Xiayu Guo,Xian Lin,Xin Yang,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:152: 110491-110491 被引量:39
标识
DOI:10.1016/j.patcog.2024.110491
摘要

Transformer, born for long-range dependency establishment, has been widely studied as a complementary of convolutional neural networks (CNNs) in medical image segmentation. However, existing CNN-Transformer hybrid approaches simply pursue implicit feature fusion without considering their underlying functional overlap. Medical images typically follow stable anatomical structures, making convolution capable of handling most segmentation targets. Without differentiation, enforcing transformers to operate self-attention for all image patches would result in severe redundancy, hindering global feature extraction. In this paper, we propose a simple yet effective hybrid network named UCTNet where transformers only focus on establishing global dependency for CNN's unreliable regions predicted through uncertainty estimation. In this way, CNN and transformer are explicitly fused to minimize functional overlap. More importantly, with fewer regions to handle, UCTNet is of better convergence to learn more robust feature representations for hard examples. Extensive experiments on publicly-available datasets demonstrate the superiority of UCTNet against the state-of-the-art approaches, achieving 89.44%, 92.91%, and 91.15% in Dice similarity coefficient on Synapse, ACDC, and ISIC2018 respectively. Furthermore, such a CNN-Transformer hybrid strategy is highly extendable to other frameworks without introducing additional computational burdens. Code is available at https://github.com/innocence0206/UCTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
James发布了新的文献求助10
刚刚
Pluto发布了新的文献求助10
4秒前
8秒前
彭婉怡yyyy完成签到,获得积分10
13秒前
CodeCraft应助LLYNL采纳,获得10
14秒前
文静听南完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
19秒前
万能图书馆应助刘海清采纳,获得30
19秒前
25秒前
30秒前
37秒前
小白菜完成签到,获得积分10
43秒前
58秒前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
Ldq发布了新的文献求助10
1分钟前
搜集达人应助个性的亦云采纳,获得10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
1分钟前
刘海清发布了新的文献求助30
1分钟前
susu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
一点通发布了新的文献求助10
1分钟前
susu发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375