ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification

堆积 集成学习 集合预报 胶质母细胞瘤 计算机科学 人工智能 机器学习 计算生物学 超参数 仿形(计算机编程) 生物信息学 数据挖掘 生物 物理 癌症研究 操作系统 核磁共振
作者
Ze‐Sheng Li,Wei Cheng,Zhenyu Zhang,Lei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fphar.2024.1375112
摘要

IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models ( https://lizesheng20190820.shinyapps.io/ecGBMsub/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ran完成签到,获得积分10
刚刚
伶俐的从菡完成签到,获得积分10
1秒前
SciGPT应助鄢懋卿采纳,获得10
1秒前
大模型应助叶宇豪采纳,获得10
1秒前
城市公园完成签到,获得积分10
1秒前
认真台灯完成签到 ,获得积分10
2秒前
杰尼龟发布了新的文献求助10
2秒前
扎心发布了新的文献求助10
2秒前
3秒前
洋葱王子发布了新的文献求助10
3秒前
3秒前
深情安青应助小王小王采纳,获得10
3秒前
3秒前
yuki完成签到,获得积分10
3秒前
CodeCraft应助霸气冰露采纳,获得10
4秒前
SYLH应助木子木子李采纳,获得10
4秒前
4秒前
4秒前
豆豆完成签到,获得积分10
4秒前
怡然若雁完成签到,获得积分10
4秒前
4秒前
南提完成签到,获得积分10
4秒前
可可西里完成签到,获得积分10
5秒前
5秒前
大气金毛完成签到 ,获得积分10
5秒前
上官若男应助刚睡醒采纳,获得10
6秒前
guguhuhu完成签到,获得积分10
6秒前
牛牛完成签到,获得积分10
6秒前
Ava应助王王的苏采纳,获得10
7秒前
852应助Zeming_Pan采纳,获得10
7秒前
7秒前
华仔应助蚍蜉渡海采纳,获得10
8秒前
8秒前
LL完成签到,获得积分10
8秒前
eliauk发布了新的文献求助10
8秒前
科研通AI2S应助可乐清欢采纳,获得10
8秒前
8秒前
龙卡烧烤店完成签到,获得积分10
8秒前
汉堡包完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583