ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification

堆积 集成学习 集合预报 胶质母细胞瘤 计算机科学 人工智能 机器学习 计算生物学 超参数 仿形(计算机编程) 生物信息学 数据挖掘 生物 物理 癌症研究 操作系统 核磁共振
作者
Ze‐Sheng Li,Wei Cheng,Zhenyu Zhang,Lei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1375112
摘要

IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models ( https://lizesheng20190820.shinyapps.io/ecGBMsub/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助寒冷的咖啡采纳,获得10
1秒前
小李完成签到 ,获得积分10
2秒前
ilaragakki发布了新的文献求助10
2秒前
3秒前
ldm发布了新的文献求助10
3秒前
不荒完成签到,获得积分10
4秒前
浮生发布了新的文献求助10
4秒前
wxy发布了新的文献求助30
5秒前
7秒前
少女徐必成完成签到 ,获得积分10
7秒前
wanci应助ElbingX采纳,获得30
8秒前
9秒前
阔达白筠完成签到,获得积分10
9秒前
路路通完成签到,获得积分10
9秒前
科研通AI2S应助Yolo采纳,获得10
11秒前
怡然绮彤发布了新的文献求助10
11秒前
11秒前
danpink发布了新的文献求助10
12秒前
张张发布了新的文献求助10
12秒前
12秒前
sfas发布了新的文献求助10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
NPC应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
fifteen应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
杳鸢应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229126
求助须知:如何正确求助?哪些是违规求助? 2876954
关于积分的说明 8196847
捐赠科研通 2544250
什么是DOI,文献DOI怎么找? 1374230
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621703