ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification

堆积 集成学习 集合预报 胶质母细胞瘤 计算机科学 人工智能 机器学习 计算生物学 超参数 仿形(计算机编程) 生物信息学 数据挖掘 生物 物理 癌症研究 操作系统 核磁共振
作者
Ze‐Sheng Li,Wei Cheng,Zhenyu Zhang,Lei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1375112
摘要

IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models ( https://lizesheng20190820.shinyapps.io/ecGBMsub/ ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Windycityguy采纳,获得10
刚刚
深情安青应助starlx0813采纳,获得10
1秒前
1秒前
义气丹雪应助细腻听白采纳,获得100
1秒前
Re发布了新的文献求助10
1秒前
科研通AI6.1应助热情千风采纳,获得10
2秒前
雨柏完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
6秒前
orixero应助年轻就要气盛采纳,获得10
7秒前
violet完成签到,获得积分20
8秒前
充电宝应助健忘的雨安采纳,获得10
10秒前
dfggg发布了新的文献求助10
10秒前
饱满的问丝完成签到,获得积分10
11秒前
12秒前
大水完成签到 ,获得积分10
13秒前
13秒前
Akira完成签到,获得积分20
14秒前
隐形曼青应助是ok耶采纳,获得10
15秒前
16秒前
16秒前
11111发布了新的文献求助20
17秒前
大水发布了新的文献求助10
19秒前
19秒前
小蘑菇应助保持科研热情采纳,获得10
19秒前
所所应助蓦然采纳,获得10
20秒前
20秒前
爱科研的小蜗啊完成签到,获得积分10
21秒前
从容梦山发布了新的文献求助10
21秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
23秒前
luo完成签到,获得积分10
24秒前
25秒前
HQQ完成签到,获得积分20
25秒前
Ava应助夏洛采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848