ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification

堆积 集成学习 集合预报 胶质母细胞瘤 计算机科学 人工智能 机器学习 计算生物学 超参数 仿形(计算机编程) 生物信息学 数据挖掘 生物 物理 癌症研究 操作系统 核磁共振
作者
Ze‐Sheng Li,Wei Cheng,Zhenyu Zhang,Lei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1375112
摘要

IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models ( https://lizesheng20190820.shinyapps.io/ecGBMsub/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
奋斗灵波发布了新的文献求助10
1秒前
药学牛马发布了新的文献求助10
1秒前
1秒前
科研通AI5应助WZ0904采纳,获得10
2秒前
叶未晞yi发布了新的文献求助10
3秒前
ipeakkka发布了新的文献求助10
4秒前
Jzhang应助迷人的映雁采纳,获得10
4秒前
4秒前
zzz完成签到,获得积分10
5秒前
5秒前
小安发布了新的文献求助10
5秒前
6秒前
叶未晞yi完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
kilig应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得30
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
博ge发布了新的文献求助10
11秒前
12秒前
葶儿发布了新的文献求助10
12秒前
hgcyp完成签到,获得积分10
17秒前
ysh完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
20秒前
wang完成签到,获得积分10
21秒前
Jzhang应助Yimim采纳,获得10
22秒前
沐风发布了新的文献求助20
23秒前
汉关发布了新的文献求助10
25秒前
25秒前
葶儿完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824