ecGBMsub: an integrative stacking ensemble model framework based on eccDNA molecular profiling for improving IDH wild-type glioblastoma molecular subtype classification

堆积 集成学习 集合预报 胶质母细胞瘤 计算机科学 人工智能 机器学习 计算生物学 超参数 仿形(计算机编程) 生物信息学 数据挖掘 生物 物理 核磁共振 操作系统 癌症研究
作者
Ze‐Sheng Li,Wei Cheng,Zhenyu Zhang,Lei Han
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1375112
摘要

IDH wild-type glioblastoma (GBM) intrinsic subtypes have been linked to different molecular landscapes and outcomes. Accurate prediction of molecular subtypes of GBM is very important to guide clinical diagnosis and treatment. Leveraging machine learning technology to improve the subtype classification was considered a robust strategy. Several single machine learning models have been developed to predict survival or stratify patients. An ensemble learning strategy combines several basic learners to boost model performance. However, it still lacked a robust stacking ensemble learning model with high accuracy in clinical practice. Here, we developed a novel integrative stacking ensemble model framework (ecGBMsub) for improving IDH wild-type GBM molecular subtype classification. In the framework, nine single models with the best hyperparameters were fitted based on extrachromosomal circular DNA (eccDNA) molecular profiling. Then, the top five optimal single models were selected as base models. By randomly combining the five optimal base models, 26 different combinations were finally generated. Nine different meta-models with the best hyperparameters were fitted based on the prediction results of 26 different combinations, resulting in 234 different stacked ensemble models. All models in ecGBMsub were comprehensively evaluated and compared. Finally, the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen as the optimal model in the ecGBMsub framework. A user-friendly web tool was developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models ( https://lizesheng20190820.shinyapps.io/ecGBMsub/ ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助张文静采纳,获得10
3秒前
5秒前
6秒前
8秒前
致李峋完成签到,获得积分10
10秒前
wait发布了新的文献求助10
11秒前
科研通AI6应助YUESIYA采纳,获得10
12秒前
12秒前
优美季节完成签到 ,获得积分10
12秒前
自信的书南完成签到,获得积分10
13秒前
13秒前
科研通AI6应助潮汐采纳,获得10
14秒前
妮妮发布了新的文献求助10
14秒前
14秒前
Ori完成签到,获得积分20
15秒前
16秒前
田甜甜发布了新的文献求助10
16秒前
星辰大海应助跳跃的访琴采纳,获得10
16秒前
20秒前
深味i完成签到,获得积分10
20秒前
张文静发布了新的文献求助10
21秒前
HL完成签到,获得积分10
22秒前
22秒前
春暖花开给春暖花开的求助进行了留言
24秒前
犬来八荒完成签到,获得积分10
25秒前
南佳发布了新的文献求助10
27秒前
27秒前
Owen应助加菲丰丰采纳,获得10
28秒前
28秒前
28秒前
科研小虫完成签到,获得积分10
29秒前
博士通完成签到 ,获得积分10
29秒前
29秒前
甜甜的觅夏完成签到,获得积分10
30秒前
30秒前
撖堡包完成签到 ,获得积分10
30秒前
_lucky_发布了新的文献求助10
32秒前
33秒前
觉醒青年发布了新的文献求助10
33秒前
Bonnienuit发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088