Reconstructed Graph Neural Network With Knowledge Distillation for Lightweight Anomaly Detection

异常检测 计算机科学 人工智能 数据挖掘 图形 分布式计算 理论计算机科学
作者
Xiaokang Zhou,Jiayi Wu,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Qun Jin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11817-11828 被引量:11
标识
DOI:10.1109/tnnls.2024.3389714
摘要

The proliferation of Internet-of-Things (IoT) technologies in modern smart society enables massive data exchange for offering intelligent services. It becomes essential to ensure secure communications while exchanging highly sensitive IoT data efficiently, which leads to high demands for lightweight models or algorithms with limited computation capability provided by individual IoT devices. In this study, a graph representation learning model, which seamlessly incorporates graph neural network (GNN) and knowledge distillation (KD) techniques, named reconstructed graph with global-local distillation (RG-GLD), is designed to realize the lightweight anomaly detection across IoT communication networks. In particular, a new graph network reconstruction strategy, which treats data communications as nodes in a directed graph while edges are then connected according to two specifically defined rules, is devised and applied to facilitate the graph representation learning in secure and efficient IoT communications. Both the structural and traffic features are then extracted from the graph data and flow data respectively, based on the graph attention network (GAT) and multilayer perceptron (MLP) techniques. These can benefit the GNN-based KD process in accordance with the more effective feature fusion and representation, considering both structural and data levels across the dynamic IoT networks. Furthermore, a lightweight local subgraph preservation mechanism improved by the graph attention mechanism and downsampling scheme to better utilize the topological information, and a so-called global information alignment defined based on the self-attention mechanism to effectively preserve the global information, are developed and incorporated in a refined graph attention based KD scheme. Compared with four different baseline methods, experiments and evaluations conducted based on two public datasets demonstrate the usefulness and effectiveness of our proposed model in improving the efficiency of knowledge transfer with higher classification accuracy but lower computational load, which can be deployed for lightweight anomaly detection in sustainable IoT computing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的小笼包完成签到 ,获得积分10
1秒前
tszjw168完成签到 ,获得积分10
1秒前
zz完成签到 ,获得积分10
9秒前
blueskyzhi完成签到,获得积分10
12秒前
ArkZ完成签到 ,获得积分10
16秒前
22秒前
路过完成签到 ,获得积分10
23秒前
28秒前
小鑫完成签到,获得积分10
35秒前
小飞完成签到 ,获得积分10
43秒前
49秒前
头孢克肟完成签到 ,获得积分10
49秒前
拓跋雨梅完成签到 ,获得积分0
50秒前
陈米花完成签到,获得积分10
51秒前
chenbin完成签到,获得积分10
51秒前
yyjl31完成签到,获得积分0
51秒前
Simon_chat完成签到,获得积分0
51秒前
吐司炸弹完成签到,获得积分10
59秒前
mayfly完成签到,获得积分10
59秒前
西扬完成签到 ,获得积分10
1分钟前
卡卡完成签到,获得积分10
1分钟前
HR112完成签到 ,获得积分10
1分钟前
Lan完成签到,获得积分10
1分钟前
谷高高完成签到 ,获得积分10
1分钟前
邵翎365完成签到,获得积分10
2分钟前
研友_LOqqmZ完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
2分钟前
lixueping发布了新的文献求助10
2分钟前
Young完成签到 ,获得积分10
3分钟前
3分钟前
飞翔的企鹅完成签到,获得积分0
3分钟前
科研通AI2S应助allrubbish采纳,获得10
3分钟前
自信放光芒~完成签到 ,获得积分10
3分钟前
lixueping完成签到,获得积分10
3分钟前
3分钟前
chengmin完成签到 ,获得积分10
4分钟前
yuehan完成签到 ,获得积分10
4分钟前
4分钟前
玉鱼儿完成签到 ,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393121
求助须知:如何正确求助?哪些是违规求助? 3003420
关于积分的说明 8809240
捐赠科研通 2690247
什么是DOI,文献DOI怎么找? 1473591
科研通“疑难数据库(出版商)”最低求助积分说明 681608
邀请新用户注册赠送积分活动 674550