Accurate error compensation method for multi-axis parallel machine via singularized jacobi geometric parameter correction and coupling error evaluation

雅可比矩阵与行列式 残余物 补偿(心理学) 联轴节(管道) 计算机科学 工作区 算法 控制理论(社会学) 数学 应用数学 人工智能 工程类 机械工程 控制(管理) 精神分析 心理学 机器人
作者
Yuheng Luo,Jian Gao,Disai Chen,Lanyu Zhang,Yachao Liu,Yongbin Zhong
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:89: 102771-102771 被引量:2
标识
DOI:10.1016/j.rcim.2024.102771
摘要

The Jacobian model is a prevalent tool for error compensation in multi-axis parallel mechanisms. However, discrepancies between the model's nominal and actual geometrical parameters, combined with equivalent replacements and high-order rounding in the modeling process, lead to equation solving challenges and modeling errors. These inaccuracies result in residual errors in the Jacobian model compensation. To address these problems, this paper proposes an optimal Jacobian correction approach. This is based on a geometrical parameter singularized Jacobian correction model, and a module for the evaluation of coupling errors for multi-axis parallel mechanisms was incorporated. Instead of relying on iterative processes, a singularized geometrical error solution method (SESM) was developed. Through this method, precise derivation of the Jacobian correction parameters is ensured, effectively addressing the indefinite equation challenge and partial posture non-solution problem. Moreover, modeling errors resulting from equivalent infinitesimal replacements and the overlooking of high-order minor values are compensated for by the SESM. It was observed that varying singularized geometrical parameters in the Jacobian model can produce different coupling effects and compensation outcomes. Therefore, a sensitivity-based error predictive evaluation method (EPEM) was introduced. By this method, the optimal correction parameter of the Jacobian model across the entire workspace is identified, ensuring precise pose error compensation. The proposed method was validated using a three-axis parallel mechanism. Through these tests, its superior efficacy was revealed. In comparison to the traditional uncorrected Jacobian compensation, reductions in position and orientation errors by 64.93% and 55.29%, respectively, were achieved. This method provides a new approach for error modeling, equation solving, and parameter correction for multi-axis mechanism error compensation and precision equipment development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助柠檬气泡饮采纳,获得10
1秒前
1秒前
Aryac发布了新的文献求助10
3秒前
4秒前
吾身无拘发布了新的文献求助30
4秒前
Orange应助ekko采纳,获得10
4秒前
李健的小迷弟应助mk91采纳,获得10
5秒前
5秒前
浮游应助东哥采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
大白应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
spc68应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
hugdoggy发布了新的文献求助20
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
liao应助科研通管家采纳,获得10
6秒前
sandy完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893