Improving the quality of hires via the use of machine learning and an expansion of the person–environment fit theory

质量(理念) 心理学 计算机科学 过程管理 认知心理学 业务 认识论 哲学
作者
Melike Artar,Yavuz Selim Balcıoğlu,Oya Erdil
出处
期刊:Management Decision [Emerald Publishing Limited]
被引量:3
标识
DOI:10.1108/md-12-2023-2295
摘要

Purpose Our proposed machine learning model contributes to improving the quality of Hire by providing a more nuanced and comprehensive analysis of candidate attributes. Instead of focusing solely on obvious factors, such as qualifications and experience, our model also considers various dimensions of fit, including person-job fit and person-organization fit. By integrating these dimensions of fit into the model, we can better predict a candidate’s potential contribution to the organization, hence enhancing the Quality of Hire. Design/methodology/approach Within the scope of the investigation, the competencies of the personnel working in the IT department of one in the largest state banks of the country were used. The entire data collection includes information on 1,850 individual employees as well as 13 different characteristics. For analysis, Python’s “keras” and “seaborn” modules were used. The Gower coefficient was used to determine the distance between different records. Findings The K-NN method resulted in the formation of five clusters, represented as a scatter plot. The axis illustrates the cohesion that exists between things (employees) that are similar to one another and the separateness that exists between things that have their own individual identities. This shows that the clustering process is effective in improving both the degree of similarity within each cluster and the degree of dissimilarity between clusters. Research limitations/implications Employee competencies were evaluated within the scope of the investigation. Additionally, other criteria requested from the employee were not included in the application. Originality/value This study will be beneficial for academics, professionals, and researchers in their attempts to overcome the ongoing obstacles and challenges related to the securing the proper talent for an organization. In addition to creating a mechanism to use big data in the form of structured and unstructured data from multiple sources and deriving insights using ML algorithms, it contributes to the debates on the quality of hire in an entire organization. This is done in addition to developing a mechanism for using big data in the form of structured and unstructured data from multiple sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助史迪仔采纳,获得10
刚刚
1秒前
zpw123发布了新的文献求助10
1秒前
orixero应助小赵采纳,获得10
3秒前
李健应助kyt采纳,获得10
4秒前
隐形夜人完成签到,获得积分10
5秒前
李烁完成签到,获得积分10
5秒前
彭于晏应助练习者采纳,获得10
7秒前
MH应助Kyra采纳,获得10
7秒前
8秒前
嘎嘎嘎完成签到,获得积分10
10秒前
11秒前
12秒前
姜姜发布了新的文献求助50
17秒前
科研通AI2S应助deng203采纳,获得10
18秒前
19秒前
SYLH应助LeiDY采纳,获得30
21秒前
yc发布了新的文献求助10
22秒前
24秒前
24秒前
fd163c应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
加菲丰丰应助科研通管家采纳,获得30
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Ultraman45发布了新的文献求助10
28秒前
英俊的铭应助霁瑶采纳,获得200
33秒前
优秀的小豆芽完成签到,获得积分10
33秒前
慕青应助ice2233采纳,获得10
35秒前
张强完成签到,获得积分10
36秒前
杨嘟嘟完成签到,获得积分10
36秒前
熬夜朱古力完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760425
求助须知:如何正确求助?哪些是违规求助? 3303889
关于积分的说明 10128323
捐赠科研通 3018149
什么是DOI,文献DOI怎么找? 1657433
邀请新用户注册赠送积分活动 791442
科研通“疑难数据库(出版商)”最低求助积分说明 754313