ChatGPT-powered Inquiry-based Learning Model of Training for Intelligent Car Racing Competition

培训(气象学) 竞赛(生物学) 航空学 计算机科学 心理学 工程类 地理 气象学 生物 生态学
作者
Qiang Chen,Hung-Cheng Chen,Yu-Liang Lin
出处
期刊:Sensors and Materials [MYU K.K.]
卷期号:36 (3): 1147-1147
标识
DOI:10.18494/sam4726
摘要

In this study, we explore the application of an inquiry-based learning model powered by ChatGPT in the context of intelligent car racing competition training.We address four key aspects: (1) the construction of a knowledge and skill acquisition process through student interactions with ChatGPT to facilitate the progressive development of problem-solving strategies and approaches; (2) project-based learning for interdisciplinary students participating in the competition, where students are grouped in accordance with their backgrounds and engage in tasks such as vehicle design and optimization, electrical drive and control algorithm adaptation, and sensor circuit design and calibration; (3) the paradigm shift in the role of teachers, transitioning from knowledge providers to co-coaches alongside ChatGPT, allowing teachers to allocate more time to monitor the progress of different student groups and design learning objectives; and (4) knowledge building and prompt engineering during different stages of the training process, where students employ various questions and prompts to interact with ChatGPT, thereby constructing domain-specific knowledge and improving the quality and effectiveness of knowledge acquisition.By leveraging ChatGPT as a conversational agent, students engage in a dynamic learning process that fosters their understanding of research problems and nurtures their problem-solving skills.Integrating an inquiry-based approach, project-based learning, and teacher-student collaboration with ChatGPT empowers students to acquire essential knowledge and cultivate critical thinking abilities, contributing to their overall growth and readiness for intelligent car racing competitions.The findings of this study shed light on the efficacy of ChatGPT-powered inquiry-based learning models in preparing students for complex and interdisciplinary challenges in the field of intelligent car racing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助疯狂的迪子采纳,获得10
1秒前
CodeCraft应助yi采纳,获得10
2秒前
exile完成签到,获得积分10
4秒前
个性的饼干完成签到,获得积分10
4秒前
慕青应助山河与海采纳,获得10
4秒前
5秒前
6秒前
10秒前
CHEN完成签到 ,获得积分10
10秒前
小核桃发布了新的文献求助10
11秒前
潇洒的诗桃应助悦动采纳,获得10
13秒前
jimmy完成签到,获得积分10
13秒前
YWJ发布了新的文献求助10
14秒前
kiki完成签到,获得积分10
14秒前
丁墨完成签到 ,获得积分10
14秒前
14秒前
15秒前
人可完成签到,获得积分10
16秒前
苗松完成签到,获得积分10
16秒前
16秒前
18秒前
李爱国应助酷酷的数据线采纳,获得10
19秒前
Nina应助董大气采纳,获得30
20秒前
Lucas应助exile采纳,获得10
21秒前
sansan发布了新的文献求助10
22秒前
login发布了新的文献求助10
22秒前
山河与海发布了新的文献求助10
22秒前
planA发布了新的文献求助10
23秒前
haowu发布了新的文献求助10
24秒前
求助吃草小河马完成签到,获得积分10
25秒前
jiang发布了新的文献求助10
26秒前
ding应助coesite采纳,获得10
26秒前
28秒前
28秒前
wdm完成签到,获得积分20
29秒前
zho发布了新的文献求助30
30秒前
li锂狸完成签到,获得积分10
33秒前
peikyang发布了新的文献求助10
33秒前
fagfagsf完成签到,获得积分10
33秒前
田様应助YUYU采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123018
求助须知:如何正确求助?哪些是违规求助? 2773507
关于积分的说明 7718023
捐赠科研通 2429087
什么是DOI,文献DOI怎么找? 1290140
科研通“疑难数据库(出版商)”最低求助积分说明 621713
版权声明 600220