Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 冶金 材料科学 精神科 外部质量评估
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [Springer Nature]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
jie完成签到 ,获得积分10
1秒前
张sir完成签到,获得积分10
2秒前
HTY完成签到 ,获得积分10
3秒前
渡劫完成签到,获得积分10
4秒前
想不出昵称完成签到,获得积分10
4秒前
好的昂完成签到,获得积分10
4秒前
1轻微完成签到,获得积分10
6秒前
pluto应助hyh采纳,获得10
7秒前
7秒前
ChiMing发布了新的文献求助10
7秒前
wy完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
zhuxf完成签到 ,获得积分10
9秒前
pufanlg完成签到,获得积分10
10秒前
ChemHu完成签到,获得积分10
13秒前
vivy完成签到 ,获得积分10
13秒前
MIST完成签到,获得积分10
13秒前
马佳音完成签到 ,获得积分10
14秒前
忧伤的八宝粥完成签到,获得积分0
14秒前
meng完成签到,获得积分10
15秒前
猜不猜不完成签到 ,获得积分10
15秒前
一颗糖完成签到 ,获得积分10
16秒前
疑夕完成签到,获得积分10
18秒前
葉鳳怡完成签到 ,获得积分10
18秒前
19秒前
唯美发布了新的文献求助10
19秒前
微笑枫完成签到,获得积分10
19秒前
Fiona完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
lcs完成签到,获得积分10
20秒前
kunny完成签到 ,获得积分10
20秒前
sunwei完成签到,获得积分10
20秒前
pluto应助hyh采纳,获得10
22秒前
隔水一路秋完成签到,获得积分10
22秒前
TonyXWZhang完成签到,获得积分10
23秒前
不信人间有白头完成签到 ,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
Tengami完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006