亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 冶金 材料科学 精神科 外部质量评估
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [Springer Nature]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qinghua完成签到,获得积分10
6秒前
chenchen发布了新的文献求助10
16秒前
karstbing发布了新的文献求助30
28秒前
开朗白山完成签到,获得积分10
37秒前
顺颂时祺完成签到,获得积分20
46秒前
金晓完成签到,获得积分10
50秒前
顺颂时祺发布了新的文献求助10
54秒前
moumou完成签到 ,获得积分10
57秒前
所所应助ice采纳,获得10
58秒前
由道罡完成签到 ,获得积分10
58秒前
希望天下0贩的0应助annathd采纳,获得30
1分钟前
annathd完成签到,获得积分10
1分钟前
1分钟前
加菲丰丰完成签到,获得积分0
1分钟前
chenchen完成签到,获得积分10
1分钟前
1分钟前
思源应助lyy采纳,获得10
1分钟前
annathd发布了新的文献求助30
1分钟前
Ariel完成签到 ,获得积分10
1分钟前
糖糖糖feng源完成签到,获得积分20
1分钟前
1分钟前
雨下一整晚完成签到 ,获得积分10
1分钟前
1分钟前
21145077发布了新的文献求助10
1分钟前
FLY完成签到,获得积分10
1分钟前
lyy发布了新的文献求助10
1分钟前
73完成签到 ,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
AL完成签到,获得积分10
2分钟前
AL发布了新的文献求助10
2分钟前
橙子完成签到 ,获得积分10
2分钟前
2分钟前
ice发布了新的文献求助10
2分钟前
英勇明雪完成签到 ,获得积分10
2分钟前
一念莲花舟完成签到 ,获得积分10
2分钟前
wzm发布了新的文献求助10
2分钟前
团子发布了新的文献求助20
2分钟前
把饭拼好给你完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634690
求助须知:如何正确求助?哪些是违规求助? 4731782
关于积分的说明 14988874
捐赠科研通 4792418
什么是DOI,文献DOI怎么找? 2559500
邀请新用户注册赠送积分活动 1519811
关于科研通互助平台的介绍 1479917