Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 外部质量评估 材料科学 精神科 冶金
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [BioMed Central]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
静心完成签到,获得积分10
2秒前
share完成签到 ,获得积分10
2秒前
3秒前
3秒前
吴硫完成签到,获得积分10
6秒前
free完成签到,获得积分10
6秒前
jlh发布了新的文献求助10
6秒前
jeronimo完成签到,获得积分10
6秒前
开心小鸭子完成签到,获得积分10
7秒前
161319141完成签到 ,获得积分10
7秒前
敞敞亮亮完成签到 ,获得积分10
8秒前
医痞子完成签到,获得积分10
8秒前
davyean完成签到,获得积分10
9秒前
daisies应助进退须臾采纳,获得20
10秒前
cyw完成签到,获得积分10
11秒前
Lucas应助wenmu采纳,获得10
11秒前
beforethedawn完成签到,获得积分10
11秒前
缓慢海蓝完成签到 ,获得积分10
12秒前
阿瑶与呆呆完成签到,获得积分10
12秒前
1335804518完成签到 ,获得积分10
12秒前
千风完成签到,获得积分10
13秒前
落叶完成签到 ,获得积分10
13秒前
进退须臾完成签到,获得积分10
18秒前
科科完成签到 ,获得积分10
18秒前
关中人完成签到,获得积分10
19秒前
Tina酱完成签到 ,获得积分10
19秒前
曾维嘉完成签到,获得积分10
19秒前
小马甲应助千风采纳,获得20
20秒前
陈晶完成签到 ,获得积分10
21秒前
anzhe完成签到,获得积分10
24秒前
Chengwang完成签到,获得积分10
27秒前
31秒前
保持理智完成签到,获得积分10
32秒前
脑洞疼应助David采纳,获得10
34秒前
为你等候完成签到,获得积分10
36秒前
认真的以珊完成签到 ,获得积分20
37秒前
Tuniverse_完成签到 ,获得积分10
39秒前
姜忆霜完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570645
求助须知:如何正确求助?哪些是违规求助? 3992150
关于积分的说明 12356767
捐赠科研通 3664836
什么是DOI,文献DOI怎么找? 2019780
邀请新用户注册赠送积分活动 1054198
科研通“疑难数据库(出版商)”最低求助积分说明 941775