Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 冶金 材料科学 精神科 外部质量评估
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [BioMed Central]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bo完成签到,获得积分10
刚刚
jkhjkhj发布了新的文献求助10
1秒前
Annieqqiu完成签到 ,获得积分10
3秒前
Shan完成签到 ,获得积分10
3秒前
4秒前
780发布了新的文献求助10
5秒前
酷波er应助华华采纳,获得10
5秒前
5秒前
小董完成签到,获得积分10
6秒前
是奶柚啊完成签到,获得积分10
7秒前
7秒前
义气凡霜完成签到,获得积分10
7秒前
nannan完成签到,获得积分10
8秒前
Lee发布了新的文献求助30
8秒前
zzz完成签到,获得积分10
9秒前
9秒前
传奇3应助无聊的太清采纳,获得10
9秒前
薯仔完成签到,获得积分10
9秒前
晓晓发布了新的文献求助10
10秒前
10秒前
780完成签到,获得积分10
11秒前
12x发布了新的文献求助10
12秒前
stdbot发布了新的文献求助10
12秒前
12秒前
maomao完成签到,获得积分10
13秒前
我的法尼玛完成签到,获得积分10
13秒前
尊敬的从凝完成签到,获得积分10
13秒前
seven完成签到,获得积分10
14秒前
PetrichorF完成签到 ,获得积分10
15秒前
hhkk发布了新的文献求助10
16秒前
大模型应助kkkk采纳,获得10
17秒前
隐形曼青应助丫头采纳,获得30
17秒前
18秒前
19秒前
瑾蘆完成签到 ,获得积分10
20秒前
20秒前
DUAN完成签到,获得积分10
21秒前
21秒前
晓晓完成签到,获得积分10
21秒前
可爱的函函应助aaaaa采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296947
求助须知:如何正确求助?哪些是违规求助? 4445951
关于积分的说明 13837832
捐赠科研通 4331031
什么是DOI,文献DOI怎么找? 2377382
邀请新用户注册赠送积分活动 1372652
关于科研通互助平台的介绍 1338217