清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 外部质量评估 材料科学 精神科 冶金
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [Springer Nature]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助YUYU采纳,获得10
7秒前
xinran完成签到,获得积分10
22秒前
共享精神应助ceeray23采纳,获得20
39秒前
曾经不言完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
非洲大象发布了新的文献求助200
1分钟前
凶狠的盛男完成签到 ,获得积分10
2分钟前
zxy完成签到,获得积分10
2分钟前
迅速灵竹完成签到 ,获得积分10
2分钟前
煜琪完成签到 ,获得积分10
2分钟前
非洲大象发布了新的文献求助200
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
nuliguan完成签到 ,获得积分10
4分钟前
可夫司机完成签到 ,获得积分10
4分钟前
英喆完成签到 ,获得积分10
5分钟前
6分钟前
YUYU发布了新的文献求助10
6分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
7分钟前
沙海沉戈完成签到,获得积分0
7分钟前
如云发布了新的文献求助10
7分钟前
widesky777完成签到 ,获得积分0
7分钟前
7分钟前
小糊涂完成签到 ,获得积分10
8分钟前
8分钟前
imi完成签到 ,获得积分0
8分钟前
9分钟前
9分钟前
聪慧沂发布了新的文献求助10
9分钟前
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
zyp应助OCDer采纳,获得70
9分钟前
汉堡包应助聪慧沂采纳,获得50
9分钟前
摘星012完成签到 ,获得积分10
9分钟前
thangxtz完成签到,获得积分10
10分钟前
Party完成签到,获得积分20
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539066
求助须知:如何正确求助?哪些是违规求助? 3116670
关于积分的说明 9326530
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720695
科研通“疑难数据库(出版商)”最低求助积分说明 712192