亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quality assurance of late gadolinium enhancement cardiac MRI images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimisation

医学 血管病学 异常 质量保证 放射科 图像质量 分类器(UML) 人工智能 深度学习 图像增强 医学物理学 内科学 病理 图像(数学) 计算机科学 冶金 材料科学 精神科 外部质量评估
作者
Sameer Zaman,Kavitha Vimalesvaran,Digby Chappell,Marta Varela,Nicholas S. Peters,Hunain Shiwani,Kristopher Knott,Rhodri Davies,James Moon,Anil A. Bharath,Nick Linton,Dárrel P. Francis,Graham D. Cole,James P. Howard
出处
期刊:Journal of Cardiovascular Magnetic Resonance [BioMed Central]
卷期号:: 101040-101040
标识
DOI:10.1016/j.jocmr.2024.101040
摘要

Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward; but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artefact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimisation or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports.Short-axis, phase sensitive inversion recovery (PSIR) late gadolinium images were extracted from our clinical CMR database and shuffled. Two, independent, blinded experts scored each individual slice for 'LGE likelihood' on a visual analogue scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into 2 classes - either "high certainty" of whether LGE was present or not, or "low certainty". The dataset was split into training, validation and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different centre.1645 images (from 272 patients) were labelled and split at the patient level into training (1151 images), validation (247 images) and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were 'high certainty' (255 for LGE, 953 for no LGE), and 437 were 'low certainty'). An external test comprising 247 images from 41 patients from another centre was also employed. After 100 epochs the performance on the internal test set was: accuracy = 94%, recall = 0.80, precision = 0.97, F1-score = 0.87 and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 91%, recall = 0.73, precision = 0.93, F1-score = 0.82 and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 86%.Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
23秒前
Ava应助李哈哈采纳,获得10
23秒前
GPTea应助科研通管家采纳,获得20
23秒前
铁马冰河入梦来完成签到 ,获得积分10
29秒前
耶斯完成签到 ,获得积分20
30秒前
31秒前
量子星尘发布了新的文献求助150
32秒前
李哈哈发布了新的文献求助10
36秒前
大意的绿蓉完成签到,获得积分10
39秒前
科研通AI2S应助李哈哈采纳,获得10
43秒前
宋米粒发布了新的文献求助10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
简让完成签到 ,获得积分10
1分钟前
在水一方应助YYy采纳,获得10
1分钟前
月军完成签到,获得积分10
1分钟前
2分钟前
YYy发布了新的文献求助10
2分钟前
nbtzy完成签到,获得积分10
2分钟前
orixero应助YYy采纳,获得10
2分钟前
GPTea应助科研通管家采纳,获得20
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
怕黑斑马完成签到,获得积分10
3分钟前
怕黑斑马发布了新的文献求助10
3分钟前
kk完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
kk发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
manfullmoon完成签到,获得积分0
4分钟前
conghuiqu完成签到,获得积分10
5分钟前
龙猫爱看书完成签到,获得积分10
5分钟前
袁青寒发布了新的文献求助10
6分钟前
ding应助guan采纳,获得10
6分钟前
馆长应助袁青寒采纳,获得10
6分钟前
科研通AI5应助咕咕咕采纳,获得10
7分钟前
poki完成签到 ,获得积分10
7分钟前
boymin2015完成签到 ,获得积分10
7分钟前
科研通AI6应助咕咕咕采纳,获得10
7分钟前
咕咕咕完成签到,获得积分10
7分钟前
科研通AI6应助咕咕咕采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900857
求助须知:如何正确求助?哪些是违规求助? 4180543
关于积分的说明 12976978
捐赠科研通 3945356
什么是DOI,文献DOI怎么找? 2164074
邀请新用户注册赠送积分活动 1182359
关于科研通互助平台的介绍 1088633