气凝胶
石墨烯
吸附
复合数
材料科学
蒸发
氧化物
化学工程
废水
纳米技术
复合材料
环境工程
有机化学
化学
环境科学
冶金
工程类
热力学
物理
作者
Guangfa Zhang,Yuekang Zhang,Jingxian Jiang
标识
DOI:10.1016/j.seppur.2024.127588
摘要
Given the ever-growing global water resource crisis, exploiting multifunctional materials featuring with high interfacial solar steam generation efficiency and good purification capability to achieving seawater desalination and wastewater treatment simultaneously are highly desired, yet it still remains a huge challenge to date. Herein, robust and multifunctional MXene/rGO (MRGA) and polydopamine & chitosan @ MRGA (CS&PDA@MRGA, CPM) three-dimensional composite aerogels with distinct interconnected cellular architecture were developed via a facile ice template-assisted chemical reduction self-assembly technology and subsequent sequential deposition modification. Due to the favorable graphene oxide-assisted assembly behavior, the resultant aerogels displayed a desirable mechanical robustness along with an excellent lightweight property. Benefiting from the strong electrostatic interaction deriving from aerogel surface moieties and dye molecules, MRGA-12 exhibited a prominent adsorption capability towards various dyes and achieved a superb adsorption capacity of up to 396.05 mg/g for malachite green (MG). Moreover, by virtue of the synergistic effect between the intentionally regulated low reduction degree of rGO and the integration of PDA and CS, CPM-12 achieved a dramatically reduced evaporation enthalpy of water from 2256 to 1617.18 J/g. Accordingly, this distinct feature resulted in an extraordinary solar-driven interfacial evaporation performance with a remarkable evaporation rate of 1.86 kg/m2/h and a high evaporation efficiency of 83.28 % under 1 sun illumination. Therefore, together with the terrific oil/water separation capability, these novel MXene-based aerogels hold a great potential for high-performance solar-driven interfacial evaporation and wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI