1122 A Deep Learning Model for Inferring Sleep Stage from a Flexible Wireless Dual Sensor Wearable System Without EEG

可穿戴计算机 脑电图 睡眠(系统调用) 计算机科学 对偶(语法数字) 人工智能 深度学习 睡眠阶段 无线 实时计算 机器学习 多导睡眠图 心理学 嵌入式系统 神经科学 电信 艺术 文学类 操作系统
作者
J. Andrew Zhang,Chunlin Li,Yuzhi Tang,Alex He-Mo,Nasim Montazeri Ghahjaverestan,Maged Goubran,Andrew Lim
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A481-A482
标识
DOI:10.1093/sleep/zsae067.01122
摘要

Abstract Introduction In-lab polysomnography (PSG) is costly and difficult to scale due to a need for specialized personnel for data acquisition and annotation. Numerous novel wearable devices without electroencephalography (EEG) have been developed to improve scalability of data acquisition. However, validated automated approaches to data annotation, including sleep staging are needed. Here, we apply deep learning approaches to the problem of sleep staging using data from the ANNE One (Sibel Health, Evanston, IL), a minimally intrusive flexible wireless dual sensor system measuring chest electrocardiography (ECG), triaxial accelerometry, and temperature, and finger photoplethysmography (PPG). Methods We obtained wearable sensor recordings from 281 adults undergoing concurrent clinical polysomnography at a tertiary care sleep lab. PSG recordings were scored according to AASM criteria. PSG and wearable sensor data were automatically aligned using their ECG signals with alignment confirmed by visual inspection. We trained a neural-network model to predict both 3-class (Wake, NREM, REM) and 2-class (Wake, Sleep) sleep stage classifications using a randomly selected 85% of the recordings and tested the model on the remaining recordings. We applied the model to ambulatory wearable sensor recordings from 233 older adults at risk for dementia. Our neural-network employed a convolutional-encoder and autoregressive-decoder architecture. In addition to time domain signals, we also engineered frequency domain features as well as selected scalar and metadata features as input to our model to improve performance. Ensembling of model variants was performed. Results Our approach achieved a 2-class macro-F1 of 0.718 with a sensitivity of 0.760 and specificity of 0.763 and a 3-class macro-F1 of 0.585 (wake precision 0.564 accuracy 0.745; NREM precision 0.886 accuracy 0.634; REM precision 0.258 accuracy 0.671). Our feature engineering and training techniques offered a 9% performance improvement from the time domain signals only baseline given the same neural network architecture, while ensembling different model variants offered a further 4% performance improvement. Conclusion A deep learning model can infer sleep stage from an EEG-less flexible wireless system and can be successfully applied to data from older community-dwelling adults at high risk for dementia. Support (if any) The Centre for Aging and Brain Health Innovation, Canadian Institutes of Health Research, National Institute on Aging

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
一一发布了新的文献求助10
1秒前
领导范儿应助Chridy采纳,获得10
1秒前
2秒前
凤凰山发布了新的文献求助10
2秒前
2秒前
孔雨珍发布了新的文献求助10
2秒前
淡定的思松应助通~采纳,获得10
3秒前
3秒前
明亮的八宝粥完成签到,获得积分10
3秒前
mayungui发布了新的文献求助10
3秒前
大型海狮完成签到,获得积分10
3秒前
搜集达人应助科研菜鸟采纳,获得10
4秒前
雨天有伞完成签到,获得积分10
4秒前
蕾子发布了新的文献求助10
4秒前
4秒前
zhui发布了新的文献求助10
4秒前
wanci应助jxcandice采纳,获得10
4秒前
factor发布了新的文献求助10
4秒前
5秒前
泊声发布了新的文献求助20
5秒前
narthon完成签到 ,获得积分10
5秒前
梦幻完成签到,获得积分10
5秒前
1604531786完成签到,获得积分10
5秒前
研友_LMNjkn发布了新的文献求助10
6秒前
xiao发布了新的文献求助10
6秒前
ww发布了新的文献求助10
6秒前
7秒前
Olsters发布了新的文献求助10
7秒前
深情安青应助该睡觉啦采纳,获得10
7秒前
7秒前
SEV完成签到,获得积分20
7秒前
愉快迎荷完成签到,获得积分10
8秒前
矮小的聪展完成签到,获得积分10
9秒前
factor完成签到,获得积分10
9秒前
Hello应助李来仪采纳,获得10
10秒前
SEV发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794