清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

1122 A Deep Learning Model for Inferring Sleep Stage from a Flexible Wireless Dual Sensor Wearable System Without EEG

可穿戴计算机 脑电图 睡眠(系统调用) 计算机科学 对偶(语法数字) 人工智能 深度学习 睡眠阶段 无线 实时计算 机器学习 多导睡眠图 心理学 嵌入式系统 神经科学 电信 艺术 文学类 操作系统
作者
J. Andrew Zhang,Chunlin Li,Yuzhi Tang,Alex He-Mo,Nasim Montazeri Ghahjaverestan,Maged Goubran,Andrew Lim
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A481-A482
标识
DOI:10.1093/sleep/zsae067.01122
摘要

Abstract Introduction In-lab polysomnography (PSG) is costly and difficult to scale due to a need for specialized personnel for data acquisition and annotation. Numerous novel wearable devices without electroencephalography (EEG) have been developed to improve scalability of data acquisition. However, validated automated approaches to data annotation, including sleep staging are needed. Here, we apply deep learning approaches to the problem of sleep staging using data from the ANNE One (Sibel Health, Evanston, IL), a minimally intrusive flexible wireless dual sensor system measuring chest electrocardiography (ECG), triaxial accelerometry, and temperature, and finger photoplethysmography (PPG). Methods We obtained wearable sensor recordings from 281 adults undergoing concurrent clinical polysomnography at a tertiary care sleep lab. PSG recordings were scored according to AASM criteria. PSG and wearable sensor data were automatically aligned using their ECG signals with alignment confirmed by visual inspection. We trained a neural-network model to predict both 3-class (Wake, NREM, REM) and 2-class (Wake, Sleep) sleep stage classifications using a randomly selected 85% of the recordings and tested the model on the remaining recordings. We applied the model to ambulatory wearable sensor recordings from 233 older adults at risk for dementia. Our neural-network employed a convolutional-encoder and autoregressive-decoder architecture. In addition to time domain signals, we also engineered frequency domain features as well as selected scalar and metadata features as input to our model to improve performance. Ensembling of model variants was performed. Results Our approach achieved a 2-class macro-F1 of 0.718 with a sensitivity of 0.760 and specificity of 0.763 and a 3-class macro-F1 of 0.585 (wake precision 0.564 accuracy 0.745; NREM precision 0.886 accuracy 0.634; REM precision 0.258 accuracy 0.671). Our feature engineering and training techniques offered a 9% performance improvement from the time domain signals only baseline given the same neural network architecture, while ensembling different model variants offered a further 4% performance improvement. Conclusion A deep learning model can infer sleep stage from an EEG-less flexible wireless system and can be successfully applied to data from older community-dwelling adults at high risk for dementia. Support (if any) The Centre for Aging and Brain Health Innovation, Canadian Institutes of Health Research, National Institute on Aging

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
37秒前
Tree_QD完成签到 ,获得积分10
37秒前
天天快乐应助JazzWon采纳,获得10
41秒前
科研通AI6.1应助一切顺利采纳,获得10
42秒前
赘婿应助Wei采纳,获得10
42秒前
小九完成签到,获得积分10
46秒前
1分钟前
JazzWon发布了新的文献求助10
1分钟前
JazzWon完成签到,获得积分10
1分钟前
1分钟前
无极微光应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
王老师完成签到 ,获得积分10
3分钟前
3分钟前
打打应助kkk采纳,获得10
4分钟前
4分钟前
平淡满天发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
川荣李奈完成签到 ,获得积分10
5分钟前
领导范儿应助动人的惜文采纳,获得10
5分钟前
笔墨纸砚完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
吴南宛发布了新的文献求助10
5分钟前
nojego完成签到,获得积分10
5分钟前
kkk发布了新的文献求助10
5分钟前
5分钟前
香蕉觅云应助吴南宛采纳,获得10
5分钟前
kkk完成签到 ,获得积分10
5分钟前
6分钟前
hhuajw完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764389
求助须知:如何正确求助?哪些是违规求助? 5551592
关于积分的说明 15406201
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635825
邀请新用户注册赠送积分活动 1583995
关于科研通互助平台的介绍 1539141