1122 A Deep Learning Model for Inferring Sleep Stage from a Flexible Wireless Dual Sensor Wearable System Without EEG

可穿戴计算机 脑电图 睡眠(系统调用) 计算机科学 对偶(语法数字) 人工智能 深度学习 睡眠阶段 无线 实时计算 机器学习 多导睡眠图 心理学 嵌入式系统 神经科学 电信 艺术 文学类 操作系统
作者
J. Andrew Zhang,Chunlin Li,Yuzhi Tang,Alex He-Mo,Nasim Montazeri Ghahjaverestan,Maged Goubran,Andrew Lim
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A481-A482
标识
DOI:10.1093/sleep/zsae067.01122
摘要

Abstract Introduction In-lab polysomnography (PSG) is costly and difficult to scale due to a need for specialized personnel for data acquisition and annotation. Numerous novel wearable devices without electroencephalography (EEG) have been developed to improve scalability of data acquisition. However, validated automated approaches to data annotation, including sleep staging are needed. Here, we apply deep learning approaches to the problem of sleep staging using data from the ANNE One (Sibel Health, Evanston, IL), a minimally intrusive flexible wireless dual sensor system measuring chest electrocardiography (ECG), triaxial accelerometry, and temperature, and finger photoplethysmography (PPG). Methods We obtained wearable sensor recordings from 281 adults undergoing concurrent clinical polysomnography at a tertiary care sleep lab. PSG recordings were scored according to AASM criteria. PSG and wearable sensor data were automatically aligned using their ECG signals with alignment confirmed by visual inspection. We trained a neural-network model to predict both 3-class (Wake, NREM, REM) and 2-class (Wake, Sleep) sleep stage classifications using a randomly selected 85% of the recordings and tested the model on the remaining recordings. We applied the model to ambulatory wearable sensor recordings from 233 older adults at risk for dementia. Our neural-network employed a convolutional-encoder and autoregressive-decoder architecture. In addition to time domain signals, we also engineered frequency domain features as well as selected scalar and metadata features as input to our model to improve performance. Ensembling of model variants was performed. Results Our approach achieved a 2-class macro-F1 of 0.718 with a sensitivity of 0.760 and specificity of 0.763 and a 3-class macro-F1 of 0.585 (wake precision 0.564 accuracy 0.745; NREM precision 0.886 accuracy 0.634; REM precision 0.258 accuracy 0.671). Our feature engineering and training techniques offered a 9% performance improvement from the time domain signals only baseline given the same neural network architecture, while ensembling different model variants offered a further 4% performance improvement. Conclusion A deep learning model can infer sleep stage from an EEG-less flexible wireless system and can be successfully applied to data from older community-dwelling adults at high risk for dementia. Support (if any) The Centre for Aging and Brain Health Innovation, Canadian Institutes of Health Research, National Institute on Aging

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jevoling发布了新的文献求助10
刚刚
1秒前
传奇3应助麦克采纳,获得10
2秒前
万事胜意发布了新的文献求助10
2秒前
xiuxiu_27完成签到 ,获得积分10
3秒前
田様应助健康的妙菱采纳,获得10
3秒前
华仔应助研友_n2r2Kn采纳,获得30
3秒前
英俊的铭应助析儿采纳,获得10
4秒前
4秒前
4秒前
hr11ft发布了新的文献求助10
5秒前
欣欣子完成签到,获得积分10
5秒前
5秒前
烟花应助轻松如冬采纳,获得10
5秒前
guangjun发布了新的文献求助10
6秒前
7秒前
上官若男应助Kw采纳,获得10
7秒前
仙人殊恍惚应助王宇辉采纳,获得50
7秒前
烟花应助Charming采纳,获得10
8秒前
10秒前
hhhh应助龙在天涯采纳,获得10
10秒前
终陌发布了新的文献求助10
10秒前
10秒前
10秒前
LL发布了新的文献求助10
10秒前
11秒前
gratitude发布了新的文献求助10
12秒前
温文尔雅完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
14秒前
yyyy发布了新的文献求助10
14秒前
14秒前
三气诸葛亮完成签到,获得积分10
15秒前
gloria发布了新的文献求助30
15秒前
大锦鲤发布了新的文献求助30
16秒前
漂流平平完成签到,获得积分10
16秒前
17秒前
快点毕业发布了新的文献求助20
17秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Semiconductor Process Reliability in Practice 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3205934
求助须知:如何正确求助?哪些是违规求助? 2855162
关于积分的说明 8098503
捐赠科研通 2520331
什么是DOI,文献DOI怎么找? 1353083
科研通“疑难数据库(出版商)”最低求助积分说明 641698
邀请新用户注册赠送积分活动 612756