1122 A Deep Learning Model for Inferring Sleep Stage from a Flexible Wireless Dual Sensor Wearable System Without EEG

可穿戴计算机 脑电图 睡眠(系统调用) 计算机科学 对偶(语法数字) 人工智能 深度学习 睡眠阶段 无线 实时计算 机器学习 多导睡眠图 心理学 嵌入式系统 神经科学 电信 艺术 文学类 操作系统
作者
J. Andrew Zhang,Chunlin Li,Yuzhi Tang,Alex He-Mo,Nasim Montazeri Ghahjaverestan,Maged Goubran,Andrew Lim
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A481-A482
标识
DOI:10.1093/sleep/zsae067.01122
摘要

Abstract Introduction In-lab polysomnography (PSG) is costly and difficult to scale due to a need for specialized personnel for data acquisition and annotation. Numerous novel wearable devices without electroencephalography (EEG) have been developed to improve scalability of data acquisition. However, validated automated approaches to data annotation, including sleep staging are needed. Here, we apply deep learning approaches to the problem of sleep staging using data from the ANNE One (Sibel Health, Evanston, IL), a minimally intrusive flexible wireless dual sensor system measuring chest electrocardiography (ECG), triaxial accelerometry, and temperature, and finger photoplethysmography (PPG). Methods We obtained wearable sensor recordings from 281 adults undergoing concurrent clinical polysomnography at a tertiary care sleep lab. PSG recordings were scored according to AASM criteria. PSG and wearable sensor data were automatically aligned using their ECG signals with alignment confirmed by visual inspection. We trained a neural-network model to predict both 3-class (Wake, NREM, REM) and 2-class (Wake, Sleep) sleep stage classifications using a randomly selected 85% of the recordings and tested the model on the remaining recordings. We applied the model to ambulatory wearable sensor recordings from 233 older adults at risk for dementia. Our neural-network employed a convolutional-encoder and autoregressive-decoder architecture. In addition to time domain signals, we also engineered frequency domain features as well as selected scalar and metadata features as input to our model to improve performance. Ensembling of model variants was performed. Results Our approach achieved a 2-class macro-F1 of 0.718 with a sensitivity of 0.760 and specificity of 0.763 and a 3-class macro-F1 of 0.585 (wake precision 0.564 accuracy 0.745; NREM precision 0.886 accuracy 0.634; REM precision 0.258 accuracy 0.671). Our feature engineering and training techniques offered a 9% performance improvement from the time domain signals only baseline given the same neural network architecture, while ensembling different model variants offered a further 4% performance improvement. Conclusion A deep learning model can infer sleep stage from an EEG-less flexible wireless system and can be successfully applied to data from older community-dwelling adults at high risk for dementia. Support (if any) The Centre for Aging and Brain Health Innovation, Canadian Institutes of Health Research, National Institute on Aging

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tayco完成签到 ,获得积分10
刚刚
欧阳完成签到 ,获得积分10
1秒前
1秒前
2秒前
orixero应助锅锅采纳,获得10
2秒前
木木完成签到 ,获得积分10
2秒前
3秒前
。。。发布了新的文献求助10
4秒前
打打应助Luo采纳,获得30
4秒前
4秒前
汉堡包应助王文杰采纳,获得10
4秒前
5秒前
积极幻桃关注了科研通微信公众号
5秒前
周美玉完成签到,获得积分10
6秒前
6秒前
7秒前
小远发布了新的文献求助10
7秒前
SYLH应助肥肥采纳,获得20
7秒前
starry发布了新的文献求助10
7秒前
8秒前
8秒前
熊二发布了新的文献求助10
8秒前
迷路小丸子完成签到,获得积分10
8秒前
斯文发布了新的文献求助10
9秒前
田様应助肉肉采纳,获得10
9秒前
闪闪茉莉关注了科研通微信公众号
10秒前
上官若男应助nylon采纳,获得10
10秒前
张暖暖完成签到,获得积分10
11秒前
在水一方应助一一采纳,获得30
11秒前
11秒前
Boxcc完成签到 ,获得积分10
11秒前
77发布了新的文献求助10
12秒前
zbyan发布了新的文献求助10
12秒前
13秒前
daheeeee发布了新的文献求助10
13秒前
14秒前
大个应助恐怖稽器人采纳,获得10
14秒前
wjay发布了新的文献求助10
14秒前
深情安青应助shaylie采纳,获得10
14秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232