Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:313: 124166-124166 被引量:5
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mahaha完成签到,获得积分10
刚刚
1秒前
赘婿应助yuxiaobolab采纳,获得10
1秒前
快乐小狗完成签到,获得积分10
1秒前
since发布了新的文献求助10
1秒前
1秒前
情怀应助美丽蕨菜子采纳,获得10
1秒前
於傲松发布了新的文献求助10
1秒前
小幸运发布了新的文献求助30
2秒前
充电宝应助小鱼采纳,获得10
2秒前
2秒前
Jettc完成签到,获得积分20
2秒前
哭泣乌完成签到,获得积分10
2秒前
1235发布了新的文献求助10
2秒前
11发布了新的文献求助10
2秒前
英俊的铭应助skin采纳,获得10
3秒前
爆米花应助lynne采纳,获得10
3秒前
戴戴应助豆豆采纳,获得10
3秒前
AD应助DONNYTIO采纳,获得10
3秒前
3秒前
HY发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
啧啧啧发布了新的文献求助10
4秒前
何易形发布了新的文献求助10
5秒前
大方的羊青完成签到,获得积分10
5秒前
Threeeeeee发布了新的文献求助10
5秒前
LAST完成签到,获得积分10
5秒前
隐形曼青应助一颗咸蛋黄采纳,获得50
5秒前
壮观静柏发布了新的文献求助10
6秒前
十二发布了新的文献求助10
6秒前
HXY完成签到 ,获得积分10
6秒前
ww完成签到,获得积分20
6秒前
zy发布了新的文献求助10
6秒前
6秒前
6秒前
wangyamei发布了新的文献求助10
6秒前
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587472
求助须知:如何正确求助?哪些是违规求助? 4670562
关于积分的说明 14783436
捐赠科研通 4622867
什么是DOI,文献DOI怎么找? 2531286
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468080