清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:313: 124166-124166 被引量:5
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gsji完成签到,获得积分10
1秒前
11秒前
十一完成签到,获得积分10
28秒前
wlscj应助科研通管家采纳,获得20
29秒前
负责以山完成签到 ,获得积分10
32秒前
小糊涂仙儿完成签到 ,获得积分10
35秒前
36秒前
啪嗒大白球完成签到,获得积分10
38秒前
Temperature完成签到,获得积分10
38秒前
文献蚂蚁完成签到,获得积分10
38秒前
CGBIO完成签到,获得积分10
39秒前
真的OK完成签到,获得积分10
39秒前
朝夕之晖完成签到,获得积分10
40秒前
Syan完成签到,获得积分10
40秒前
qq完成签到,获得积分10
40秒前
yzz完成签到,获得积分10
40秒前
BowieHuang完成签到,获得积分10
40秒前
runtang完成签到,获得积分10
41秒前
王jyk完成签到,获得积分10
41秒前
cityhunter7777完成签到,获得积分10
41秒前
喜喜完成签到,获得积分10
42秒前
prrrratt完成签到,获得积分10
42秒前
zwzw完成签到,获得积分10
42秒前
洋芋饭饭完成签到,获得积分10
42秒前
呵呵哒完成签到,获得积分10
43秒前
BMG完成签到,获得积分10
43秒前
清水完成签到,获得积分10
43秒前
张浩林完成签到,获得积分10
44秒前
美满惜寒完成签到,获得积分10
44秒前
ys1008完成签到,获得积分10
45秒前
成就小蜜蜂完成签到 ,获得积分10
50秒前
57秒前
愤怒的念蕾完成签到,获得积分10
1分钟前
科研啄木鸟完成签到 ,获得积分10
1分钟前
聪明初彤完成签到,获得积分10
2分钟前
KGYM完成签到,获得积分20
2分钟前
KGYM发布了新的文献求助10
2分钟前
LiXF完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
wang5945完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368280
求助须知:如何正确求助?哪些是违规求助? 4496188
关于积分的说明 13996744
捐赠科研通 4401334
什么是DOI,文献DOI怎么找? 2417793
邀请新用户注册赠送积分活动 1410511
关于科研通互助平台的介绍 1386228