Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:313: 124166-124166 被引量:5
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳万仇发布了新的文献求助30
刚刚
1秒前
ruirui完成签到,获得积分10
2秒前
鹏程发布了新的文献求助10
2秒前
HJJHJH发布了新的文献求助10
3秒前
4秒前
元谷雪发布了新的文献求助10
5秒前
6秒前
6秒前
废人一个完成签到,获得积分10
6秒前
123654完成签到,获得积分10
7秒前
雪原白鹿完成签到,获得积分10
8秒前
8秒前
8秒前
Amazing完成签到 ,获得积分10
8秒前
尉迟十八发布了新的文献求助60
9秒前
张小南发布了新的文献求助10
10秒前
J_C_Van完成签到,获得积分10
10秒前
窦房结完成签到 ,获得积分20
10秒前
10秒前
内向井发布了新的文献求助10
11秒前
星辰完成签到,获得积分10
11秒前
11秒前
12秒前
ccc发布了新的文献求助10
12秒前
希望天下0贩的0应助czz采纳,获得10
13秒前
13秒前
lnan发布了新的文献求助10
13秒前
13秒前
东郭雁梅发布了新的文献求助10
14秒前
深情安青应助Aurora采纳,获得10
14秒前
别斑秃了完成签到 ,获得积分10
14秒前
14秒前
wheeler1完成签到,获得积分10
14秒前
打打应助科研通管家采纳,获得10
14秒前
Return应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
寻道图强应助科研通管家采纳,获得30
15秒前
annie应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420