Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:313: 124166-124166 被引量:3
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静千凡发布了新的文献求助10
刚刚
务实荧荧完成签到 ,获得积分10
1秒前
3秒前
小秦同学完成签到,获得积分10
3秒前
怕黑的楷瑞完成签到 ,获得积分10
3秒前
可爱的函函应助麦满分采纳,获得10
3秒前
大模型应助嘎嘎采纳,获得10
4秒前
完美凝竹发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
午见千山应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
jevon应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
FashionBoy应助ebby采纳,获得10
8秒前
文静千凡完成签到,获得积分10
9秒前
科研通AI2S应助冯昊采纳,获得10
9秒前
9秒前
桐桐应助<・)))><<采纳,获得10
10秒前
扬大小汤完成签到,获得积分10
11秒前
12秒前
Six_seven完成签到,获得积分10
13秒前
乐乐应助crazystone采纳,获得10
14秒前
15秒前
16秒前
16秒前
李爱国应助苹果秋灵采纳,获得10
18秒前
ebby发布了新的文献求助10
21秒前
21秒前
<・)))><<发布了新的文献求助10
22秒前
YYY完成签到,获得积分10
23秒前
林药师完成签到,获得积分10
23秒前
24秒前
24秒前
luqqq完成签到,获得积分10
25秒前
刻苦伊完成签到,获得积分10
27秒前
28秒前
rmrb完成签到,获得积分10
29秒前
林巧发布了新的文献求助30
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243658
求助须知:如何正确求助?哪些是违规求助? 2887537
关于积分的说明 8248871
捐赠科研通 2556242
什么是DOI,文献DOI怎么找? 1384302
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625776