亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:313: 124166-124166 被引量:5
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fighting完成签到,获得积分10
3秒前
Jasper应助yg采纳,获得10
6秒前
11秒前
量子星尘发布了新的文献求助10
15秒前
25秒前
月亮完成签到,获得积分10
25秒前
27秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得20
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
35秒前
在水一方应助7_2U1采纳,获得10
40秒前
菠萝炒饭不要辣椒完成签到,获得积分10
44秒前
桐桐应助无情的琳采纳,获得10
1分钟前
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
2分钟前
2分钟前
CAOHOU应助路漫漫其修远兮采纳,获得10
2分钟前
松林揽月发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Jasper应助路漫漫其修远兮采纳,获得10
2分钟前
万能图书馆应助愿景采纳,获得10
2分钟前
桐桐应助Wei采纳,获得10
2分钟前
2分钟前
7_2U1发布了新的文献求助10
2分钟前
2分钟前
7_2U1完成签到,获得积分20
3分钟前
3分钟前
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401