Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module

高光谱成像 卷积神经网络 人工智能 模式识别(心理学) 支持向量机 计算机科学 极限学习机 核(代数) 人工神经网络 数学 组合数学
作者
Dong Yang,Yuxing Zhou,Yu Jie,Qianqian Li,Tianyu Shi
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:313: 124166-124166 被引量:5
标识
DOI:10.1016/j.saa.2024.124166
摘要

Rapid, effective and non-destructive detection of the defective maize kernels is crucial for their high-quality storage in granary. Hyperspectral imaging (HSI) coupled with convolutional neural network (CNN) based on spectral and spatial attention (Spl-Spal-At) module was proposed for identifying the different types of maize kernels. The HSI data within 380–1000 nm of six classes of sprouted, heat-damaged, insect-damaged, moldy, broken and healthy kernels was collected. The CNN-Spl-At, CNN-Spal-At and CNN-Spl-Spal-At models were established based on the spectra, images and their fusion features as inputs for the recognition of different kernels. Further compared the performances of proposed models and conventional models were built by support vector machine (SVM) and extreme learning machine (ELM). The results indicated that the recognition ability of CNN with attention series models was significantly better than that of SVM and ELM models and fused features were more conducive to expressing the appearance of different kernels than single features. And the CNN-Spl-Spal-At model had an optimal recognition result with high average classification accuracy of 98.04 % and 94.56 % for the training and testing sets, respectively. The recognition results were visually presented on the surface image of kernels with different colors. The CNN-Spl-Spal-At model was built in this study could effectively detect defective maize kernels, and it also had great potential to provide the analysis approaches for the development of non-destructive testing equipment based on HSI technique for maize quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
般若发布了新的文献求助10
刚刚
Zin完成签到,获得积分10
刚刚
吹梦西洲完成签到,获得积分10
刚刚
慕青应助熊猫采纳,获得10
1秒前
打打应助得到采纳,获得10
1秒前
所所应助Aoch采纳,获得10
1秒前
叨叨完成签到,获得积分10
2秒前
桐桐应助陶醉的鹤轩采纳,获得10
2秒前
清水小镇完成签到,获得积分10
2秒前
柳叶乘风完成签到,获得积分10
2秒前
2秒前
2秒前
诸葛烤鸭完成签到,获得积分10
3秒前
单薄的钢笔完成签到,获得积分10
3秒前
sky完成签到,获得积分10
4秒前
5秒前
Luckqi6688完成签到,获得积分10
5秒前
科研八戒完成签到,获得积分10
5秒前
清脆的夜白完成签到,获得积分10
6秒前
DongWei95完成签到,获得积分10
6秒前
长刀介错人完成签到,获得积分10
6秒前
6秒前
张浩完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
后夜完成签到,获得积分10
6秒前
Yimi完成签到,获得积分20
6秒前
于生有你完成签到,获得积分10
6秒前
hoyden完成签到,获得积分10
6秒前
董晓萱发布了新的文献求助10
6秒前
7秒前
搜集达人应助hata233采纳,获得10
7秒前
8秒前
luozejun完成签到,获得积分10
8秒前
爆杀小白鼠完成签到,获得积分10
9秒前
9秒前
5552222完成签到,获得积分10
9秒前
得到完成签到,获得积分20
9秒前
hebilie发布了新的文献求助10
10秒前
fhl完成签到,获得积分20
11秒前
淡然安雁完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890557
求助须知:如何正确求助?哪些是违规求助? 4174147
关于积分的说明 12954482
捐赠科研通 3936006
什么是DOI,文献DOI怎么找? 2159565
邀请新用户注册赠送积分活动 1177896
关于科研通互助平台的介绍 1083319