Full-field deformation measurement of structural nodes based on panoramic camera and deep learning-based tracking method

计算机视觉 人工智能 计算机科学 交叉口(航空) 流离失所(心理学) 节点(物理) 位移场 投影(关系代数) 失真(音乐) 特征(语言学) 跟踪(教育) 算法 有限元法 工程类 语言学 结构工程 计算机网络 教育学 哲学 航空航天工程 心理学 放大器 心理治疗师 带宽(计算)
作者
Shang Jiang,Yingjun Wang,Jian Zhang,Jiewen Zheng
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:146: 103840-103840 被引量:9
标识
DOI:10.1016/j.compind.2022.103840
摘要

Full-field deformation measurement of structures generally requires the aid of complex and expensive multi-camera measurement systems. A full-field structural deformation measurement method using a single panoramic camera and deep learning-based tracking algorithm is proposed. The contributions are as follows: (1) To address the problem that existing full-field image acquisition methods rely on multi-camera systems, a full-field image acquisition method based on a single panoramic camera is proposed, in which a distortion-free planar image covering the full-field of the structure is obtained by decomposing the projection in multiple directions based on the panoramic camera imaging model and the cubic projection method. (2) To solve the problem that the nodes of structures usually contain little texture and are difficult to track robustly with existing image processing methods, an object detection network with a modified tiny feature map layer and attention mechanism is applied to extract the region of interest (ROI) of each node automatically. (3) Finally, the ROIs of the identified nodes are clustered using a perceptual hashing method and then the node coordinates are calculated using a line segment detector (LSD) and intersection fitting. The proposed method is validated on a scaled model of a stadium, and the comparison to the deformation results of total station shows that the proposed method can calculate the displacement of all node at once, and the average error between the displacement results and those of the total station is 3.7 mm, which proves the practicality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
顾矜应助激昂的柚子采纳,获得10
1秒前
3秒前
4秒前
搜集达人应助哈哈哈哈采纳,获得10
4秒前
思大锤发布了新的文献求助10
4秒前
4秒前
李梦关注了科研通微信公众号
4秒前
6秒前
7秒前
天天快乐应助调皮帆布鞋采纳,获得10
7秒前
jojo144发布了新的文献求助10
7秒前
7秒前
科研通AI5应助菜菜采纳,获得10
7秒前
skittles发布了新的文献求助20
7秒前
7秒前
发文必过发布了新的文献求助10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
hh发布了新的文献求助10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
cosmos应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905