Full-field deformation measurement of structural nodes based on panoramic camera and deep learning-based tracking method

计算机视觉 人工智能 计算机科学 交叉口(航空) 流离失所(心理学) 节点(物理) 位移场 投影(关系代数) 失真(音乐) 特征(语言学) 跟踪(教育) 算法 有限元法 工程类 心理学 放大器 计算机网络 语言学 哲学 结构工程 带宽(计算) 心理治疗师 航空航天工程 教育学
作者
Shang Jiang,Yingjun Wang,Jian Zhang,Jiewen Zheng
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:146: 103840-103840 被引量:9
标识
DOI:10.1016/j.compind.2022.103840
摘要

Full-field deformation measurement of structures generally requires the aid of complex and expensive multi-camera measurement systems. A full-field structural deformation measurement method using a single panoramic camera and deep learning-based tracking algorithm is proposed. The contributions are as follows: (1) To address the problem that existing full-field image acquisition methods rely on multi-camera systems, a full-field image acquisition method based on a single panoramic camera is proposed, in which a distortion-free planar image covering the full-field of the structure is obtained by decomposing the projection in multiple directions based on the panoramic camera imaging model and the cubic projection method. (2) To solve the problem that the nodes of structures usually contain little texture and are difficult to track robustly with existing image processing methods, an object detection network with a modified tiny feature map layer and attention mechanism is applied to extract the region of interest (ROI) of each node automatically. (3) Finally, the ROIs of the identified nodes are clustered using a perceptual hashing method and then the node coordinates are calculated using a line segment detector (LSD) and intersection fitting. The proposed method is validated on a scaled model of a stadium, and the comparison to the deformation results of total station shows that the proposed method can calculate the displacement of all node at once, and the average error between the displacement results and those of the total station is 3.7 mm, which proves the practicality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crack发布了新的文献求助10
刚刚
YuGe完成签到,获得积分10
1秒前
无奈镜子发布了新的文献求助10
1秒前
汉堡包应助Asuna采纳,获得10
2秒前
tt完成签到,获得积分10
3秒前
nini发布了新的文献求助10
4秒前
4秒前
4秒前
zhangyu完成签到,获得积分10
4秒前
LWJ发布了新的文献求助10
5秒前
guaishou完成签到,获得积分10
6秒前
6秒前
6秒前
wqw应助Quitter采纳,获得20
7秒前
田様应助摩登兄弟采纳,获得10
7秒前
豆浆油条发布了新的文献求助10
8秒前
田様应助全若之采纳,获得10
9秒前
英姑应助12334采纳,获得10
9秒前
王海丽发布了新的文献求助10
9秒前
李爱国应助无奈镜子采纳,获得10
10秒前
crazy发布了新的文献求助10
11秒前
11秒前
Sun完成签到,获得积分10
12秒前
12秒前
13秒前
生椰拿铁完成签到,获得积分10
13秒前
14秒前
顺利毕业完成签到,获得积分10
14秒前
ding应助风趣铅笔采纳,获得10
14秒前
qqjjrr0425完成签到,获得积分10
15秒前
15秒前
Battery-Li完成签到,获得积分10
16秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得30
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992193
求助须知:如何正确求助?哪些是违规求助? 3533192
关于积分的说明 11261459
捐赠科研通 3272613
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809442