Next‐Generation Vanadium Flow Batteries

电解质 流动电池 无机化学 卤化物 化学 溴化物 离子 材料科学 电极 物理化学 有机化学
作者
Chris Menictas,Maria Skyllas‐Kazacos
标识
DOI:10.1002/9783527832767.ch30
摘要

Since the original all-vanadium flow battery (VFB) was proposed by UNSW in the mid-1980s, a number of new vanadium-based electrolyte chemistries have been investigated to increase the energy density beyond the 35 Wh l −1 of the original UNSW system. The different chemistries are often referred to as Generations 1 (G1) to 4 (G4) and they all involve vanadium as the main active material. The original Generation 1 (G1) utilises vanadium ions in a sulphuric acid supporting electrolyte with or without additives. Generation 2 (G2), the vanadium bromide flow cell (V/Br), also developed by researchers at UNSW Sydney, employs the same vanadium halide solution in both half-cells but utilises the V 2+ /V 3+ redox couple and the Br − /Br 3 − couple in the negative and positive half-cells, respectively. This system can provide a twofold increase in energy density with the possibility of bromine gas release being mitigated by the use of complexing agents. Researchers at the Pacific Northwest National Laboratory in the US proposed using a mixed-acid electrolyte consisting of H 2 SO 4 and HCl to support the vanadium ions. This system is often referred to as the Generation 3 VFB (G3) and the mixed-acid electrolyte enables higher concentrations of vanadium to be dissolved in the supporting electrolyte compared to G1, together with a wider operating temperature range. The vanadium oxygen fuel cell (VOFC) was initially proposed by researchers at the Electrotechnical Laboratories in Japan and demonstrated at UNSW Sydney. It is referred to as the Generation 4 (G4) VFB and utilises the V 2+ /V 3+ redox couple in the negative half-cell and the oxygen reduction reaction in the positive. As there is no positive electrolyte tank, the electrolyte volume is half that of the G1, G2, and G3 VFBs, providing a significantly higher theoretical energy density of approximately 150 Wh l −1 . While the G1 VFB is currently undergoing considerable commercialisation and the G3 mixed-acid electrolyte system has seen substantial field testing, the G2 and G4 technologies are still in the early stages of development, with further work still needed to achieve commercial uptake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王则前发布了新的文献求助10
5秒前
果果完成签到 ,获得积分10
7秒前
9秒前
9秒前
10秒前
Dado完成签到,获得积分10
11秒前
success应助无限的难敌采纳,获得10
11秒前
蔡小葵完成签到 ,获得积分10
11秒前
jianguo完成签到,获得积分10
12秒前
jeff发布了新的文献求助10
14秒前
wyk发布了新的文献求助10
15秒前
虚幻双双完成签到 ,获得积分10
15秒前
orange完成签到,获得积分10
16秒前
Jirobai完成签到,获得积分10
21秒前
隐形曼青应助zsy采纳,获得10
22秒前
24秒前
24秒前
乐乐应助卓立0418采纳,获得30
26秒前
黑暗与黎明完成签到 ,获得积分10
29秒前
31秒前
雨听寒应助豆豆采纳,获得10
32秒前
善学以致用应助好了采纳,获得10
33秒前
毛豆应助雪落采纳,获得10
33秒前
思源应助bemyselfelsa采纳,获得10
34秒前
Owen应助wen采纳,获得10
34秒前
36秒前
啪啪啪完成签到,获得积分10
36秒前
CipherSage应助橘络采纳,获得10
36秒前
tqy发布了新的文献求助10
37秒前
嘟嘟许完成签到 ,获得积分10
37秒前
万能图书馆应助调皮嫣娆采纳,获得10
38秒前
39秒前
wang完成签到,获得积分10
39秒前
40秒前
乐乐应助温柔的鹭洋采纳,获得30
40秒前
生鱼安乐完成签到 ,获得积分10
40秒前
大模型应助Lee采纳,获得10
40秒前
41秒前
田様应助tqy采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589