Been There, Done That: How Episodic and Semantic Memory Affects the Language of Authentic and Fictitious Reviews

领域 计算机科学 背景(考古学) 语义记忆 认知心理学 心理语言学 自然语言处理 情景记忆 心理学 人工智能 考试(生物学) 认知科学 语言学 认知 神经科学 法学 古生物学 哲学 生物 政治学
作者
Ann Kronrod,Ivan Gordeli,Jeffrey K. Lee
出处
期刊:Journal of Consumer Research [Oxford University Press]
卷期号:50 (2): 405-425 被引量:2
标识
DOI:10.1093/jcr/ucac056
摘要

Abstract This article suggests a theory-driven approach to address the managerial problem of distinguishing between real and fake reviews. Building on memory research and linguistics, we predict that when recollecting an authentic experience in a product review, people rely to a greater extent on episodic memory. By contrast, when writing a fictitious review, people do not have episodic memory available to them. Therefore, they must rely to a greater extent on semantic memory. We suggest that reliance on these different memory types is reflected in the language used in authentic and fictitious reviews. We develop predictions about five linguistic features characterizing authentic versus fictitious reviews. We test our predictions via a multi-method approach, combining computational linguistics, experimental design, and machine learning. We employ a large-scale experiment to derive a dataset of reviews, as well as two datasets containing reviews from online platforms. We also test whether an algorithm relying on our theory-driven linguistic features is context independent, relative to other benchmark algorithms, and shows better cross-domain performance when tested across datasets. By developing a theory that extends memory and psycholinguistics research to the realm of word of mouth, this work contributes to our understanding of how authentic and fictitious reviews are created.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉发布了新的文献求助10
刚刚
A1234发布了新的文献求助10
1秒前
英俊的铭应助弄井采纳,获得30
1秒前
小二郎应助Dean采纳,获得10
2秒前
故意的冰淇淋完成签到 ,获得积分10
2秒前
2秒前
远方完成签到,获得积分10
3秒前
kiminonawa完成签到,获得积分0
4秒前
zrz完成签到,获得积分10
4秒前
5秒前
传奇3应助morlison采纳,获得10
5秒前
8秒前
8秒前
9秒前
10秒前
乐呀完成签到,获得积分10
10秒前
木头人呐完成签到 ,获得积分10
10秒前
小马甲应助吴岳采纳,获得10
10秒前
天天向上赶完成签到,获得积分10
10秒前
整齐的凡梦完成签到,获得积分10
11秒前
孙冉冉发布了新的文献求助10
12秒前
MHB应助towerman采纳,获得10
13秒前
Dean发布了新的文献求助10
13秒前
14秒前
加油加油发布了新的文献求助10
14秒前
lili完成签到 ,获得积分10
15秒前
文剑武书生完成签到,获得积分10
16秒前
科研通AI5应助无限鞅采纳,获得10
16秒前
16秒前
852应助木棉采纳,获得10
16秒前
17秒前
卓哥完成签到,获得积分10
18秒前
19秒前
Agan发布了新的文献求助10
19秒前
19秒前
20秒前
morlison发布了新的文献求助10
20秒前
科研通AI5应助金色年华采纳,获得10
22秒前
充电宝应助kh453采纳,获得10
22秒前
正经俠发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808