Diagnosis of brake friction faults in high-speed trains based on 1DCNN and GraphSAGE under data imbalance

火车 制动器 计算机科学 工程类 机械工程 汽车工程 地理 地图学
作者
Min Zhang,Xianjun Li,Zaiyu Xiang,Jiliang Mo,Shihao Xu
出处
期刊:Measurement [Elsevier]
卷期号:207: 112378-112378 被引量:11
标识
DOI:10.1016/j.measurement.2022.112378
摘要

A braking friction fault diagnosis method based on one-dimensional convolutional neural network (1DCNN) and GraphSAGE network is proposed to solve the problem of fault imbalance samples in actual high-speed train braking friction operation, taking into account the correlation between different fault features. To begin, the original sample is created using the friction interface state characterisation parameters such as vibration noise, vibration acceleration and friction coefficient. Second, the graph is built using the sample’s characteristics as well as the Jensen-Shannon divergence between each sample. The 1DCNN is then used to extract and compress the graph node features; Next, the GraphSAGE is used to aggregate the information of each node in the graph, compensating for the neural network’s inability to learn the features of small samples and ensuring that all kinds of fault information are fully extracted. Finally, GraphSAGE outputs the braking friction fault state category to realise braking friction fault diagnosis with imbalanced data. The proposed network was tested using various imbalanced data sets and it was discovered that even with fewer fault samples and more normal samples, the network can still achieve at least 93.83% effective diagnostic accuracy. The effectiveness of the proposed network for each braking fault identification is further verified using precision, recall, F1 score and t-distribution stochastic neighbour embedding (t-SNE) visualisation. The superiority of the proposed network is validated when compared to the imbalanced data processing method and other state-of-the-art networks, indicating that the proposed network can achieve more effective fault diagnosis under imbalanced data without data expansion and large changes to the network, providing a new feasible method for research in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜白梅发布了新的文献求助10
1秒前
曹7发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
5秒前
memter发布了新的文献求助10
5秒前
小飞七应助zhao采纳,获得10
5秒前
Dandanhuang完成签到,获得积分10
5秒前
科研通AI5应助欢喜白梅采纳,获得10
6秒前
化工牛马发布了新的文献求助10
6秒前
小鞠发布了新的文献求助10
6秒前
才下眉头发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
科研通AI5应助178181采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
雪茶发布了新的文献求助10
9秒前
搜集达人应助单纯的黄蜂采纳,获得10
10秒前
10秒前
华青ww完成签到,获得积分10
10秒前
11秒前
12秒前
喜悦松完成签到,获得积分10
12秒前
12秒前
哈牛发布了新的文献求助10
12秒前
13秒前
Ultraviolet发布了新的文献求助20
13秒前
珍宝珠完成签到 ,获得积分10
13秒前
14秒前
聪慧海蓝给聪慧海蓝的求助进行了留言
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542524
求助须知:如何正确求助?哪些是违规求助? 3119774
关于积分的说明 9340737
捐赠科研通 2817742
什么是DOI,文献DOI怎么找? 1549232
邀请新用户注册赠送积分活动 722060
科研通“疑难数据库(出版商)”最低求助积分说明 712928