亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106420-106420 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daguan完成签到,获得积分10
17秒前
星辰大海应助独特的秋采纳,获得10
22秒前
31秒前
11发布了新的文献求助10
38秒前
NexusExplorer应助科研通管家采纳,获得10
40秒前
汉堡包应助科研通管家采纳,获得10
40秒前
52秒前
58秒前
1分钟前
离雨完成签到,获得积分20
1分钟前
shennie发布了新的文献求助10
1分钟前
1分钟前
andrele应助离雨采纳,获得10
1分钟前
1分钟前
独特的秋发布了新的文献求助10
1分钟前
sandaomi发布了新的文献求助10
1分钟前
Owen应助_ban采纳,获得10
1分钟前
1分钟前
梅者如西发布了新的文献求助10
2分钟前
传奇3应助梅者如西采纳,获得10
2分钟前
Wen929完成签到 ,获得积分10
2分钟前
魔法甜甜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
魔法甜甜发布了新的文献求助10
2分钟前
_ban发布了新的文献求助10
2分钟前
Sep_w发布了新的文献求助10
2分钟前
烟花应助阿凝采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Tuan发布了新的文献求助10
2分钟前
拉长的灵阳完成签到,获得积分10
2分钟前
3分钟前
Sep_w完成签到,获得积分10
3分钟前
3分钟前
lr完成签到 ,获得积分10
3分钟前
3分钟前
qian发布了新的文献求助10
3分钟前
3分钟前
情怀应助张子捷采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818167
捐赠科研通 4651975
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469764