MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106420-106420 被引量:25
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助M20小陈采纳,获得10
1秒前
1秒前
bind关注了科研通微信公众号
2秒前
学术乞丐完成签到,获得积分10
2秒前
2秒前
lucky完成签到,获得积分10
3秒前
Erica完成签到,获得积分10
3秒前
FOX完成签到,获得积分10
4秒前
raffia完成签到,获得积分10
4秒前
5秒前
yaohan1121完成签到,获得积分10
5秒前
打打应助xue采纳,获得30
5秒前
李爱国应助攀登转化高峰采纳,获得10
6秒前
小甲同学发布了新的文献求助10
6秒前
CipherSage应助LL77采纳,获得10
6秒前
Gxy完成签到,获得积分10
7秒前
669完成签到,获得积分10
7秒前
raffia发布了新的文献求助10
7秒前
8秒前
Ava应助矩阵分析应用采纳,获得30
8秒前
冷傲的荧荧完成签到,获得积分10
8秒前
shurly完成签到,获得积分20
9秒前
9秒前
桐桐应助史道夫采纳,获得10
11秒前
希望能成为一名科研女强人关注了科研通微信公众号
11秒前
11秒前
元谷雪发布了新的文献求助10
11秒前
11秒前
精灵夜雨应助当道不采纳,获得10
12秒前
番茄黄瓜芝士片完成签到 ,获得积分10
12秒前
orixero应助下雨了吗?采纳,获得10
12秒前
薰硝壤应助望都采纳,获得10
12秒前
13秒前
13秒前
贪学傲菡发布了新的文献求助10
13秒前
13秒前
Qdada完成签到,获得积分10
14秒前
SLHY发布了新的文献求助10
14秒前
14秒前
reform发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567