亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106420-106420 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Criminology34采纳,获得100
3秒前
原子完成签到,获得积分10
10秒前
溆玉碎兰笑完成签到 ,获得积分10
13秒前
sunialnd完成签到,获得积分10
24秒前
思源应助lawang采纳,获得10
26秒前
隐形曼青应助lawang采纳,获得10
26秒前
李健的小迷弟应助lawang采纳,获得10
26秒前
思源应助lawang采纳,获得10
26秒前
研友_VZG7GZ应助lawang采纳,获得10
26秒前
Lucas应助lawang采纳,获得10
26秒前
今后应助chenjy202303采纳,获得20
56秒前
1分钟前
Criminology34发布了新的文献求助100
1分钟前
所所应助lawang采纳,获得10
1分钟前
华仔应助lawang采纳,获得10
1分钟前
情怀应助lawang采纳,获得10
1分钟前
无花果应助lawang采纳,获得10
1分钟前
酷波er应助lawang采纳,获得10
1分钟前
今后应助lawang采纳,获得10
1分钟前
丘比特应助lawang采纳,获得10
1分钟前
Jasper应助lawang采纳,获得10
1分钟前
善学以致用应助lawang采纳,获得10
1分钟前
英俊的铭应助lawang采纳,获得10
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
chenjy202303发布了新的文献求助20
1分钟前
Endymion发布了新的文献求助10
1分钟前
今后应助Endymion采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957