MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106420-106420 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的不言完成签到 ,获得积分10
刚刚
樊书雪完成签到,获得积分10
刚刚
满意的芸完成签到 ,获得积分10
1秒前
共享精神应助神勇的天问采纳,获得10
1秒前
美人鱼战士完成签到 ,获得积分10
1秒前
hehe发布了新的文献求助10
1秒前
front完成签到,获得积分10
1秒前
英姑应助燕海雪采纳,获得10
1秒前
医文轩完成签到,获得积分10
2秒前
小明完成签到,获得积分10
2秒前
科研包完成签到,获得积分10
3秒前
tangzanwayne发布了新的文献求助10
3秒前
复杂的凡梦完成签到,获得积分10
4秒前
dzjin完成签到,获得积分10
6秒前
温婉完成签到,获得积分10
7秒前
孤独的迎滑完成签到,获得积分10
7秒前
三木完成签到 ,获得积分10
8秒前
Bella完成签到,获得积分10
9秒前
523完成签到,获得积分10
9秒前
小道奇完成签到 ,获得积分10
10秒前
蔬菜土豆发布了新的文献求助10
10秒前
任笑白完成签到 ,获得积分10
11秒前
Livvia完成签到,获得积分10
11秒前
Pwrry完成签到,获得积分10
12秒前
亮仔完成签到,获得积分10
13秒前
斯文的天奇完成签到 ,获得积分10
13秒前
安详的韩庆完成签到,获得积分10
13秒前
harric完成签到,获得积分10
14秒前
123456完成签到,获得积分20
14秒前
澈千子完成签到,获得积分10
14秒前
曾建完成签到 ,获得积分10
14秒前
chen完成签到 ,获得积分10
15秒前
喜东东完成签到,获得积分10
15秒前
孤独梦曼完成签到,获得积分10
15秒前
Jasper应助慕容松采纳,获得10
16秒前
亮仔发布了新的文献求助10
17秒前
17秒前
HAL9000完成签到,获得积分10
17秒前
昵称完成签到,获得积分10
18秒前
和平发展完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855