MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106420-106420 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷海豚完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
青青完成签到 ,获得积分10
4秒前
Chan0501发布了新的文献求助10
4秒前
昭昭完成签到,获得积分10
5秒前
SCI发布了新的文献求助10
5秒前
卓然完成签到,获得积分10
5秒前
李来仪发布了新的文献求助10
6秒前
7秒前
菲菲呀完成签到,获得积分10
7秒前
Rrr发布了新的文献求助10
7秒前
9秒前
陌路完成签到,获得积分10
9秒前
善学以致用应助leon采纳,获得30
9秒前
10秒前
斯文败类应助嘻嘻采纳,获得10
10秒前
科研通AI5应助小只bb采纳,获得30
10秒前
yyyy发布了新的文献求助10
10秒前
2023AKY完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
彭于晏应助惠惠采纳,获得10
13秒前
风魂剑主完成签到,获得积分10
14秒前
yryzst9899发布了新的文献求助10
14秒前
15秒前
飘逸小笼包完成签到,获得积分10
15秒前
科研小郑完成签到,获得积分10
15秒前
CipherSage应助熊boy采纳,获得10
15秒前
XXGG完成签到 ,获得积分10
16秒前
大个应助舒心赛凤采纳,获得10
16秒前
晨曦发布了新的文献求助10
17秒前
17秒前
ff0110完成签到,获得积分10
18秒前
星辰大海应助苹果萧采纳,获得10
18秒前
徐徐完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794