亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MI-DABAN: A dual-attention-based adversarial network for motor imagery classification

计算机科学 人工智能 对抗制 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Huiying Li,Dongxue Zhang,Jingmeng Xie
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106420-106420 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106420
摘要

The brain–computer interface (BCI) based on motor imagery electroencephalography (EEG) is widely used because of its convenience and safety. However, due to the distributional disparity between EEG signals, data from other subjects cannot be used directly to train a subject-specific classifier. For efficient use of the labeled data, domain transfer learning and adversarial learning are gradually applied to BCI classification tasks. While these methods improve classification performance, they only align globally and ignore task-specific class boundaries, which may lead to the blurring of features near the classification boundaries. Simultaneously, they employ fully shared generators to extract features, resulting in the loss of domain-specific information and the destruction of performance. To address these issues, we propose a novel dual-attention-based adversarial network for motor imagery classification (MI-DABAN). Our framework leverages multiple subjects’ knowledge to improve a single subject’s motor imagery classification performance by cleverly using a novel adversarial learning method and two unshared attention blocks. Specifically, without introducing additional domain discriminators, we iteratively maximize and minimize the output difference between the two classifiers to implement adversarial learning to ensure accurate domain alignment. Among them, maximization is used to identify easily confused samples near the decision boundary, and minimization is used to align the source and target domain distributions. Moreover, for the shallow features from source and target domains, we use two non-shared attention blocks to preserve domain-specific information, which can prevent the negative transfer of domain information and further improve the classification performance on test data. We conduct extensive experiments on two publicly available EEG datasets, namely BCI Competition IV Datasets 2a and 2b. The experiment results demonstrate our method’s effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助陀螺采纳,获得10
1秒前
xinchi发布了新的文献求助10
2秒前
6秒前
可爱的函函应助elliotzzz采纳,获得10
7秒前
8秒前
lingyun4592发布了新的文献求助10
16秒前
浮游应助oleskarabach采纳,获得10
17秒前
刻苦的念柏应助oleskarabach采纳,获得10
17秒前
xinchi完成签到,获得积分10
18秒前
搜集达人应助汐汐采纳,获得10
24秒前
43秒前
44秒前
45秒前
110o发布了新的文献求助10
49秒前
elliotzzz发布了新的文献求助10
50秒前
54秒前
lingyun4592发布了新的文献求助10
55秒前
丽优发布了新的文献求助10
57秒前
希望天下0贩的0应助Party采纳,获得10
1分钟前
1分钟前
汉堡包应助Evan采纳,获得10
1分钟前
丽优完成签到,获得积分10
1分钟前
lvzhou完成签到,获得积分10
1分钟前
lvzhou发布了新的文献求助20
1分钟前
赘婿应助elliotzzz采纳,获得10
1分钟前
1分钟前
xl_c完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
汐汐发布了新的文献求助10
1分钟前
深情安青应助lingyun4592采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助20
1分钟前
NexusExplorer应助elliotzzz采纳,获得10
2分钟前
2分钟前
卷卷发布了新的文献求助10
2分钟前
卷卷完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426438
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171809
捐赠科研通 4457954
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435768
关于科研通互助平台的介绍 1413229