BSDG: Anomaly Detection of Microservice Trace Based on Dual Graph Convolutional Neural Network

计算机科学 异常检测 跟踪(心理语言学) 稳健性(进化) 卷积神经网络 人工智能 图形 数据挖掘 依赖关系(UML) 模式识别(心理学) 理论计算机科学 语言学 生物化学 基因 哲学 化学
作者
Kuanzhi Shi,Jing Li,Yuecan Liu,Yuzhu Chang,Xuyang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 171-185 被引量:1
标识
DOI:10.1007/978-3-031-20984-0_12
摘要

Microservice architecture has been widely used by more and more developers in recent years. Accurate anomaly detection is crucial for system maintenance. Trace data can reflect the microservice dependency relationship and response time, which has been adopted for microservice anomaly detection now. However, due to the lack of unification modeling framework of response time and call path, the performance of anomaly detection degrades, and difficult to adapt to downstream tasks. To address the above issues, we propose BSDG, a trace anomaly detection method based on a dual graph convolutional neural network (dualGCN). First, BSDG extracts the microservice call dependencies, combing the learnable node attributes generated by Bi-directional Long Short-Term Memory(BiLSTM) to build an attribute dependency graph combined response time and call path. Then, a self-attention mapping graph is constructed and we use a dualGCN with mutual attention to generate effective feature embedding representation. Finally, BSDG adopts a multilayer perceptron with a new classification loss function to train the model in an end-to-end way for anomaly detection. The experimental results on public benchmarks show that the proposed BDSG outperforms baseline methods. We also conduct experiments on our constructed microservice trace dataset to validate the robustness of BSDG. Experiments show that the BSDG outperforms existing methods in microservice trace anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Akim应助小满采纳,获得10
1秒前
1秒前
欣喜电脑应助科研通管家采纳,获得10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
典雅问寒应助科研通管家采纳,获得10
1秒前
我不到啊完成签到,获得积分10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
Frank应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
ymjssg应助科研通管家采纳,获得10
2秒前
nancylan应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
典雅问寒应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
欣喜电脑应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
4秒前
dynamoo应助dzjin采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
走你治应助科研通管家采纳,获得10
4秒前
典雅问寒应助科研通管家采纳,获得10
4秒前
hi应助科研通管家采纳,获得10
4秒前
糊了你的粥完成签到,获得积分10
4秒前
hi应助科研通管家采纳,获得10
4秒前
菠萝发布了新的文献求助10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
欣喜电脑应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537