Using Radiomics to Detect Subtle Architecture Changes of Cartilage and Subchondral Bone in Chronic Lateral Ankle Instability Patients Based on MRI PD-FS Images
To use radiomics to detect the subtle changes of cartilage and subchondral bone in chronic lateral ankle instability (CLAI) patients based on MRI PD-FS images.
Materials and Methods
A total of 215 CLAI patients and 186 healthy controls were included and randomly split into a training set (n=281, patients/controls=151/130) and an independent test set (n=120, patients/controls=64/56). They underwent ankle MRI examinations. On sagittal PD-FS images, eight cartilage regions and their corresponding subchondral bone regions were drawn. Radiomics models of cartilage, subchondral bone and combined cartilage and subchondral bone were built to differentiate CLAI patients from controls. A receiver operating characteristic curve (ROC) was used to assess the model's performance.
Results
In the test dataset, the cartilage model yielded an area under the curve (AUC) of 0.0.912 (95% confidence interval (CI): 0.858-0.965, p<0.001), a sensitivity of 0.859, a specificity of 0.893, a negative predictive value (NPV) of 0.848, and a positive predictive value (PPV) of 0.902. The subchondral bone model yielded an AUC of 0.837 (95% CI: 0.766-0.907, p<0.001), a sensitivity of 0.875, a specificity of 0.714, an NPV of 0.833, and a PPV of 0.778. For the combined model, the AUC was 0.921 (95% CI: 0.863-0.972, p<0.001), sensitivity was 0.844, specificity was 0.911, NPV was 0.836, and PPV was 0.915, whose AUC was higher than those of both the cartilage model and the subchondral bone model.
Conclusion
The combined radiomics model achieved satisfying performance in detecting potential early architectural changes in cartilage and subchondral bone for CLAI patients.