A continuous Bayesian network regression model for estimating seismic liquefaction‐induced settlement of the free‐field ground

离散化 回归分析 人工神经网络 回归 高斯过程 贝叶斯概率 贝叶斯网络 结算(财务) 计算机科学 工程类 高斯分布 数学 机器学习 人工智能 统计 物理 数学分析 万维网 付款 量子力学
作者
Jilei Hu,Bin Xiong,Zheng Zhang,Jing Wang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:52 (11): 3216-3237 被引量:3
标识
DOI:10.1002/eqe.3804
摘要

Abstract The Bayesian network (BN) method has been successfully applied to evaluate earthquake liquefaction‐induced settlement of free‐field ground in recent years due to several specific advantages. However, the existing BN models need to discretize all continuous variables, and therefore, they can only predict the range value of the settlement (i.e., classification). Thus, information loss is inevitable in the process of discretization, which will largely reduce the prediction accuracy of the model. To realize the application of the BN method in the regression prediction of seismic liquefaction‐induced settlement, this study proposes a hybrid modelling method combining a hill‐climbing algorithm and domain knowledge to construct the structure of a continuous BN regression model based on historical liquefaction‐induced settlement data, and then the conditional linear Gaussian approach is used to learn the conditional probability distributions of parameters. A five‐fold cross‐validation test is used to demonstrate better generalization performance and advantages (such as considering model uncertainty and prior knowledge) of the continuous BN regression model compared with a discrete BN classification model, simplified methods such as the Tokimatsu & Seed and Ishihara & Yoshimine methods, and an artificial neural network model. Their advantages and disadvantages are discussed. In addition, the other two continuous BN models using the Arias intensity and cumulative absolute velocity instead of the peak ground acceleration perform slightly worse than the proposed continuous BN model, and the reason for this difference is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gcl完成签到,获得积分10
5秒前
5秒前
干将莫邪完成签到,获得积分10
6秒前
6秒前
7秒前
9秒前
大模型应助科研通管家采纳,获得10
10秒前
曾经念真应助科研通管家采纳,获得10
10秒前
曾经念真应助科研通管家采纳,获得10
10秒前
曾经念真应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
曾经念真应助科研通管家采纳,获得10
10秒前
11秒前
曾经念真应助科研通管家采纳,获得10
11秒前
大胆绮应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
寒月发布了新的文献求助10
11秒前
淡定从凝发布了新的文献求助10
13秒前
13秒前
无私秋珊应助玖凝采纳,获得10
13秒前
13秒前
16秒前
19秒前
gcl发布了新的文献求助200
20秒前
YY发布了新的文献求助10
20秒前
Nikita完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
25秒前
寒月完成签到,获得积分20
26秒前
生动路人应助yuhangli采纳,获得10
26秒前
hhhhuo发布了新的文献求助10
27秒前
27秒前
小桃不逃关注了科研通微信公众号
27秒前
wangqinlei完成签到 ,获得积分10
28秒前
Gengar发布了新的文献求助10
29秒前
Vickicherry完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724