材料科学
陶瓷
复合材料
立方氧化锆
抗弯强度
断裂韧性
微观结构
收缩率
作者
Li Wang,Yong Lian,Weizhe Tang,Rui Dou
标识
DOI:10.1016/j.ceramint.2022.12.062
摘要
In this study, iron(III) oxide (Fe2O3)-doped zirconia (3Y-TZP) ceramics with desirable mechanical and color properties for dental restorations were fabricated by stereolithography-based additive manufacturing. Six zirconia ceramic paste specimens with high solid loading (58 vol%) and reasonably low viscosity were prepared according to doped content of Fe2O3 (0–0.14 wt%). Zirconia ceramics were fabricated using commercial stereolithography three-dimensional printer and sintered at 1500 °C for 4 h to obtain final dense parts with a relative density of above 99%. Effects of Fe2O3 doping on microstructure, mechanical properties, and color of 3Y-TZP ceramics were investigated. Results indicate that Fe2O3 exhibited little effect on the shrinkage and density of colored ceramics compared to uncolored ceramics. Average grain size of 3Y-TZP ceramics sintered at 1500 °C increased with increasing content of Fe2O3. X-ray diffraction analysis showed that tetragonal phase was dominant phase structure of white and colored 3Y-TZP ceramics, and monoclinic phase increased with increasing Fe2O3 content. Compared to uncolored specimens, Fe2O3 exhibited negative effects on three-point flexural strength (mean > 879.70 MPa), Vickers hardness (mean > 12.14 GPa), and indentation fracture toughness (mean > 4.23 MPa m1/2) of the colored specimens. With the increase in the content of Fe2O3 from 0 to 0.14 wt%, L* (black–white index) value decreased from 83.39 to 79.54, a* (green–red index) value increased from −2.28 to −0.74, and b* (blue–yellow index) value increased from 1.15 to 17.94. Chromaticity (L*, a*, b*) fell within the range of natural tooth color, indicating that it is suitable for dental application because of its color compatibility with natural teeth. In addition, the transmittance slightly decreased with increasing Fe2O3 content. Thus, Fe2O3-doped 3Y-TZP ceramics can be used as potential candidates for aesthetic dental restoration materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI