预算约束
计算机科学
激励
数学优化
机构设计
约束(计算机辅助设计)
功能(生物学)
激励相容性
贪婪算法
启发式
算法
经济
微观经济学
人工智能
生物
工程类
机械工程
进化生物学
数学
作者
Yuanhang Zhou,Fei Tong,Shibo He
标识
DOI:10.1109/tmc.2022.3229470
摘要
In recent years, mobile crowdsensing (MCS) has been widely adopted as an efficient method for large-scale data collection. In MCS systems, insufficient participation and unstable data quality have become two crucial issues that prevent crowdsensing from further development. Thus designing a valid incentive mechanism is essentially significant. Most of the existing works on incentive mechanism design focus on single-objective optimization with various constraints. However, in the real-world crowdsensing, it is common that several objectives to be optimized exist. Furthermore, constraints on budget or cost are often seen in MCS systems as the feasibility of implementing incentive mechanism is indispensable. This paper studies a bi-objective optimization scenario of MCS to simultaneously optimize total value function and coverage function with budget/cost constraint through a set of problem transformations. Then a budget- or cost-feasible bi-objective incentive mechanism is further proposed to solve the aforementioned bi-objective optimization problem through the combination of binary search and greedy heuristic solution under budget or cost constraint, respectively. Through both rigorous theoretical analysis and extensive simulations, the obtained results demonstrate that the mechanisms achieve computation efficiency, individual rationality, truthfulness, and budget or cost feasibility, while one mechanism obtains an approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI