A Deep Learning Model for Green Algae Detection on SAR Images

合成孔径雷达 判别式 环境科学 水华 遥感 人工智能 计算机科学 海面温度 模式识别(心理学) 地质学 海洋学 生态学 浮游植物 营养物 生物
作者
Yuan Guo,Le Gao,Xiaofeng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:18
标识
DOI:10.1109/tgrs.2022.3215895
摘要

This study developed a textural-enhanced deep learning (DL) model based on the classic U-net framework for green algae detection in Sentinel-1 synthetic aperture radar (SAR) imagery. Four special modifications are made in the framework: texture-fused input dataset, texture concatenation to effectively use the texture information, weighted loss function to settle the imbalance of algae-seawater samples, and an attention module to facilitate model focus on the discriminative features efficiently. To build the proposed model, we collected 119 Sentinel-1 SAR images acquired in the Yellow Sea and manually labeled 8441 samples, among which 4421/1896/2124 were used as the training/validation/testing dataset. Experiments show that the classification achieves the mean intersection over union (mIOU) of 86.31%, outperforming previous DL methods. Furthermore, each modification is effective, and the weighted loss function plays the most critical role. Moreover, we monitored green tide in the Yellow Sea from 2019 to 2021 using the proposed model and analyzed the relationship between green tide interannual variation and two primary environmental factors: nitrate concentration and sea surface temperature (SST). The interannual variation is characterized via three crucial indexes: bloom duration, coverage area, and nearshore damage. The detection results reveal that the bloom duration is the longest (shortest) in 2019 (2020), corresponding to the biggest (smallest) coverage area in 2019 (2020). In addition, the nearshore damage is the heaviest (lightest) in 2021 (2020). We also found that the interannual variation of green tide scales is partly related to the available nitrate concentration and SST variation in algae-distributed regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助兴武采纳,获得10
刚刚
2秒前
坚强谷雪发布了新的文献求助10
2秒前
2秒前
完美世界应助急诊守夜人采纳,获得10
2秒前
和院发布了新的文献求助10
3秒前
溪鱼完成签到,获得积分10
4秒前
4秒前
Wulei完成签到 ,获得积分10
4秒前
文杰发布了新的文献求助10
6秒前
7秒前
影像大侠完成签到 ,获得积分10
8秒前
陈世超发布了新的文献求助10
9秒前
在水一方应助满意的白云采纳,获得10
9秒前
番茄完成签到,获得积分10
10秒前
忧虑的慕山完成签到,获得积分10
11秒前
11秒前
和院完成签到,获得积分10
12秒前
12秒前
13秒前
bkagyin应助冤家Gg采纳,获得10
13秒前
端庄忆梅完成签到,获得积分10
14秒前
14秒前
zhihe完成签到,获得积分10
15秒前
小衫生完成签到,获得积分10
15秒前
logan完成签到,获得积分10
16秒前
xu11完成签到,获得积分10
16秒前
16秒前
xh发布了新的文献求助10
16秒前
Gloriauuu发布了新的文献求助10
17秒前
无花果应助xh采纳,获得10
17秒前
欢喜的采梦完成签到,获得积分10
19秒前
雷寒云发布了新的文献求助10
19秒前
宋宋完成签到 ,获得积分10
21秒前
土土发布了新的文献求助30
21秒前
英勇雁芙发布了新的文献求助10
21秒前
东华帝君完成签到,获得积分10
23秒前
九花玉露丸完成签到,获得积分10
23秒前
xms完成签到,获得积分20
24秒前
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214709
求助须知:如何正确求助?哪些是违规求助? 4390186
关于积分的说明 13668965
捐赠科研通 4251601
什么是DOI,文献DOI怎么找? 2332784
邀请新用户注册赠送积分活动 1330424
关于科研通互助平台的介绍 1284128