A Deep Learning Model for Green Algae Detection on SAR Images

合成孔径雷达 判别式 环境科学 水华 遥感 人工智能 计算机科学 海面温度 模式识别(心理学) 地质学 海洋学 生态学 浮游植物 营养物 生物
作者
Yuan Guo,Le Gao,Xiaofeng Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:18
标识
DOI:10.1109/tgrs.2022.3215895
摘要

This study developed a textural-enhanced deep learning (DL) model based on the classic U-net framework for green algae detection in Sentinel-1 synthetic aperture radar (SAR) imagery. Four special modifications are made in the framework: texture-fused input dataset, texture concatenation to effectively use the texture information, weighted loss function to settle the imbalance of algae-seawater samples, and an attention module to facilitate model focus on the discriminative features efficiently. To build the proposed model, we collected 119 Sentinel-1 SAR images acquired in the Yellow Sea and manually labeled 8441 samples, among which 4421/1896/2124 were used as the training/validation/testing dataset. Experiments show that the classification achieves the mean intersection over union (mIOU) of 86.31%, outperforming previous DL methods. Furthermore, each modification is effective, and the weighted loss function plays the most critical role. Moreover, we monitored green tide in the Yellow Sea from 2019 to 2021 using the proposed model and analyzed the relationship between green tide interannual variation and two primary environmental factors: nitrate concentration and sea surface temperature (SST). The interannual variation is characterized via three crucial indexes: bloom duration, coverage area, and nearshore damage. The detection results reveal that the bloom duration is the longest (shortest) in 2019 (2020), corresponding to the biggest (smallest) coverage area in 2019 (2020). In addition, the nearshore damage is the heaviest (lightest) in 2021 (2020). We also found that the interannual variation of green tide scales is partly related to the available nitrate concentration and SST variation in algae-distributed regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
研友_nPxRRn完成签到,获得积分10
2秒前
莽哥完成签到,获得积分10
2秒前
快乐小子发布了新的文献求助10
2秒前
哇哇哇哇我完成签到,获得积分10
3秒前
星星完成签到 ,获得积分10
3秒前
小龙完成签到,获得积分10
4秒前
龙叶静完成签到 ,获得积分10
5秒前
巧克力手印完成签到,获得积分10
5秒前
小高同学完成签到,获得积分10
6秒前
单薄含巧发布了新的文献求助10
6秒前
xrkxrk完成签到 ,获得积分0
6秒前
科研通AI6应助maomao采纳,获得10
8秒前
10秒前
养乐多完成签到,获得积分10
10秒前
佩18093370982完成签到 ,获得积分10
11秒前
11秒前
榕小蜂完成签到 ,获得积分10
11秒前
小九完成签到,获得积分10
11秒前
科研通AI6应助马前人采纳,获得10
13秒前
春夏秋冬发布了新的文献求助10
14秒前
14秒前
风清扬完成签到,获得积分0
14秒前
Chere20200628完成签到 ,获得积分10
14秒前
单薄含巧完成签到,获得积分10
14秒前
jing完成签到,获得积分10
15秒前
15秒前
sinlar完成签到,获得积分10
15秒前
16秒前
HUangg完成签到,获得积分10
18秒前
中华牌老阿姨完成签到,获得积分0
18秒前
哦吼啦啦啦完成签到,获得积分10
19秒前
大力不弱发布了新的文献求助10
20秒前
朴素羊发布了新的文献求助10
20秒前
guozizi完成签到,获得积分10
21秒前
xsf完成签到,获得积分10
23秒前
名侦探柯基完成签到 ,获得积分10
24秒前
guozizi发布了新的文献求助10
25秒前
陈_Ccc完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570792
求助须知:如何正确求助?哪些是违规求助? 3992220
关于积分的说明 12357045
捐赠科研通 3664985
什么是DOI,文献DOI怎么找? 2019844
邀请新用户注册赠送积分活动 1054261
科研通“疑难数据库(出版商)”最低求助积分说明 941818