Stitching Based on Corrections to Obtain a Flat Image on a Curved-Edge OLED Display

图像拼接 计算机视觉 像素 人工智能 亮度 计算机科学 亮度 边缘检测 失真(音乐) 光学 GSM演进的增强数据速率 校准 计算机图形学(图像) 图像处理 图像(数学) 物理 量子力学 计算机网络 放大器 带宽(计算)
作者
Yao Zhang,Jianxu Mao,Yaonan Wang,Caiping Liu,Hui Zhang,Haoran Tan,Kai Zeng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:1
标识
DOI:10.1109/tim.2022.3206836
摘要

Vision-based inspection, measurement, and repair technologies are becoming extremely significant in the manufacturing of display screens. These allow for concurrent luminance measurement and defect detection across millions of display sub-pixels. However, for curved OLED displays, the image quality of curved edges is too poor and the localization of sub-pixel-level pixel or defects cannot be achieved. As a result, detection and measurement algorithms or systems that would otherwise work on flat screens fail when rolled out to curved screens. In this paper, we proposed a Stitching-Based-on-Corrections (SBoC) method to obtain a standardized flat image on OLED displays with curved edges. This allows traditional methods to become applicable again. First, reflective prisms were added to the imaging system to capture clear images of the curved-edge regions of the display screen. Then, an active calibration image flattening algorithm based on polynomial geometric correction was proposed to standardize the images on the display screen. Second, we designed adaptive gray-level corrections perpendicular and parallel to the principal axis of the reflective prisms to restore the brightness and contrast of curved-edge regions to an ideal flat state. The corrected images of different regions were then stitched together, and an ideal, distortion-free image was produced, with pixels distributed in a strict regular pattern. The experimental results confirmed the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
redondo10完成签到,获得积分0
2秒前
3秒前
乔qiao发布了新的文献求助30
6秒前
WZ0904发布了新的文献求助10
7秒前
poegtam完成签到,获得积分10
8秒前
大胆盼兰发布了新的文献求助10
9秒前
wuyan204完成签到 ,获得积分10
10秒前
windcreator完成签到,获得积分10
10秒前
redondo5完成签到,获得积分0
10秒前
wangrswjx完成签到 ,获得积分10
10秒前
科研通AI5应助su采纳,获得10
10秒前
13秒前
15秒前
小二郎应助嘻嘻采纳,获得10
15秒前
yun完成签到 ,获得积分10
16秒前
16秒前
18秒前
健忘曼冬发布了新的文献求助10
18秒前
redondo完成签到,获得积分10
18秒前
momo完成签到,获得积分10
19秒前
希望天下0贩的0应助meng采纳,获得10
20秒前
龙歪歪发布了新的文献求助10
21秒前
21秒前
暮城完成签到,获得积分10
21秒前
22秒前
云墨完成签到 ,获得积分10
22秒前
24秒前
25秒前
Akim应助caoyy采纳,获得10
25秒前
26秒前
科研通AI2S应助DreamMaker采纳,获得10
26秒前
29秒前
zho发布了新的文献求助30
29秒前
29秒前
ywang发布了新的文献求助10
29秒前
ZD小草完成签到 ,获得积分10
30秒前
健忘曼冬完成签到,获得积分10
31秒前
hkl1542发布了新的文献求助50
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849