电磁线圈
材料科学
超导磁体
磁铁
超导电性
拓扑(电路)
物理
核磁共振
凝聚态物理
电气工程
工程类
量子力学
作者
Shunzhong Chen,Wanshuo Sun,Yaohui Wang,Yinming Dai,Jinshui Sun,Junsheng Cheng,Zili Zhang,Hui Liu,Qiuliang Wang
标识
DOI:10.1109/tasc.2022.3213919
摘要
A 14 T conduction-cooled superconducting magnet with a clear cold bore of 50 mm in diameter is designed and fabricated for a physical property measurement system. The magnet is built with six Nb 3 Sn coils and five NbTi coils arranged coaxially. To reliably protect the 14 T magnet, a passive quench protection scheme is developed, including a novel coil subdivision method and heater network design. The novel coil subdivision method mixes a NbTi coil and an Nb 3 Sn coil into the same subdivision to reduce the hot-spot temperature of the Nb 3 Sn coil. Different heaters parameters are compared and analyzed to obtain a lower hot-spot temperature. In addition, an efficient way of raising the ratio of copper to superconductor in the superconducting wires is used to reduce the hot-spot temperature of the Nb 3 Sn coils in the low magnetic field region. An in-house quench simulation code in MATLAB, including a finite difference method for the Nb 3 Sn coils in the low magnetic field region and a quench ellipsoid propagation model for the other coils, has been developed. This article describes the details of the passive quench protection scheme and presents the quench simulation results.
科研通智能强力驱动
Strongly Powered by AbleSci AI