Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis

计算机科学 图形 判决 解析 依赖关系(UML) 人工智能 依赖关系图 自然语言处理 依存语法 理论计算机科学
作者
Yuan Li,Jin Wang,Liang-Chih Yu,Xuejie Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (1): 140-153 被引量:12
标识
DOI:10.1109/tai.2022.3227535
摘要

Aspect-level sentiment classification (ASC) is designed to identify the sentiment orientation of given aspect terms in a sentence. Previous neural networks have used attention mechanisms to align context words with the appropriate aspect terms. Without considering syntactic dependencies, these models may erroneously focus on context words that are not related to the aspect terms. To address this issue, the graph convolution network (GCN) and the graph attention network (GAT) are proposed to build a graph based on the dependency parse tree, allowing the representations of context words to be propagated to the aspect terms according to their syntactic dependencies. However, these models consider all syntactic dependencies to be of the same type, and thus may result in inappropriate propagation of word representations in the graph. To further distinguish between the syntactic dependencies, this study proposes a syntactic graph attention network (SGAN) to incorporate the knowledge of dependency types into the GAT. The dependency types are modeled as edge embeddings to learn the attention weight of each edge according to its dependency type. By considering different dependency types and their weights, the proposed method can block inappropriate propagation to better associate the context words to aspect terms. To increase training process stability and enrich the diversity of graph representations, a weighted multihead attention is applied to compose the graph representations generated by different heads. The experimental results on five benchmark datasets show that the SGAN yields more accurate results than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民完成签到 ,获得积分10
3秒前
3秒前
ttc完成签到,获得积分10
3秒前
石墨粉完成签到,获得积分10
3秒前
Zo完成签到,获得积分10
3秒前
筑梦之鱼完成签到,获得积分10
4秒前
五本笔记完成签到 ,获得积分10
4秒前
4秒前
XNM发布了新的文献求助10
6秒前
wol007完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
向往完成签到 ,获得积分10
10秒前
18859805972完成签到 ,获得积分10
11秒前
Lucky完成签到 ,获得积分10
12秒前
12秒前
shfgref完成签到,获得积分10
13秒前
小张呢好完成签到,获得积分10
13秒前
上官若男应助111采纳,获得20
14秒前
量子星尘发布了新的文献求助10
14秒前
bigger.b完成签到,获得积分10
14秒前
15秒前
tutu完成签到,获得积分10
16秒前
我是笨蛋发布了新的文献求助10
16秒前
十七完成签到 ,获得积分10
17秒前
孤星应助悦己采纳,获得50
18秒前
addi111完成签到,获得积分10
19秒前
21秒前
zgrmws完成签到,获得积分0
21秒前
曹沛岚完成签到,获得积分10
22秒前
sunnyjc发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
被教书耽误的主厨完成签到,获得积分10
26秒前
27秒前
负责雨安完成签到 ,获得积分10
28秒前
虚心的不二完成签到 ,获得积分10
29秒前
29秒前
Index完成签到,获得积分20
29秒前
大力诺言发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131