syntactic Graph Attention Network for Aspect-Level Sentiment Analysis

计算机科学 图形 判决 解析 依赖关系(UML) 人工智能 依赖关系图 自然语言处理 理论计算机科学
作者
Yuan Li,Jin Wang,Liang-Chih Yu,Xuejie Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tai.2022.3227535
摘要

Aspect-level sentiment classification (ASC) is designed to identify the sentiment orientation of given aspect terms in a sentence. Previous neural networks have used attention mechanisms to align context words with the appropriate aspect terms. Without considering syntactic dependencies, these models may erroneously focus on context words that are not related to the aspect terms. To address this issue, the graph convolution network (GCN) and the graph attention network (GAT) are proposed to build a graph based on the dependency parse tree, allowing the representations of context words to be propagated to the aspect terms according to their syntactic dependencies. However, these models consider all syntactic dependencies to be of the same type, and thus may result in inappropriate propagation of word representations in the graph. To further distinguish between the syntactic dependencies, this study proposes a syntactic graph attention network (SGAN) to incorporate the knowledge of dependency types into the graph attention network. The dependency types are modeled as edge embeddings to learn the attention weight of each edge according to its dependency type. By considering different dependency types and their weights, the proposed method can block inappropriate propagation to better associate the context words to aspect terms. To increase training process stability and enrich the diversity of graph representations, a weighted multihead attention is applied to compose the graph representations generated by different heads. The experimental results on five benchmark datasets show that the SGAN yields more accurate results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzm发布了新的文献求助10
4秒前
lily完成签到,获得积分10
4秒前
科研通AI2S应助失眠的万言采纳,获得10
4秒前
无所不能的虫虫完成签到,获得积分10
5秒前
赘婿应助等风的人采纳,获得10
5秒前
jinjinjin发布了新的文献求助10
6秒前
Jm发布了新的文献求助10
7秒前
塞昏妮完成签到 ,获得积分10
9秒前
神勇的青旋应助清脆遥采纳,获得10
10秒前
等风的人完成签到,获得积分10
10秒前
13秒前
21秒前
orixero应助wudan采纳,获得10
21秒前
Xutz应助Rjy采纳,获得10
22秒前
Xiaojun发布了新的文献求助10
23秒前
jinjinjin完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
勤恳的谷波完成签到,获得积分10
25秒前
桐桐应助dzz采纳,获得10
26秒前
zjky6r发布了新的文献求助10
27秒前
27秒前
wzm完成签到,获得积分10
29秒前
FashionBoy应助xx采纳,获得10
29秒前
29秒前
5Hepburn发布了新的文献求助10
30秒前
30秒前
30秒前
温柔的擎完成签到,获得积分10
30秒前
hun完成签到,获得积分10
31秒前
31秒前
yanna发布了新的文献求助10
32秒前
hun发布了新的文献求助10
34秒前
35秒前
35秒前
危机的夏寒完成签到,获得积分10
35秒前
36秒前
wanci应助帅气绮露采纳,获得10
36秒前
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228284
求助须知:如何正确求助?哪些是违规求助? 2876084
关于积分的说明 8193771
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333