Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis

计算机科学 图形 判决 解析 依赖关系(UML) 人工智能 依赖关系图 自然语言处理 依存语法 理论计算机科学
作者
Yuan Li,Jin Wang,Liang-Chih Yu,Xuejie Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (1): 140-153 被引量:12
标识
DOI:10.1109/tai.2022.3227535
摘要

Aspect-level sentiment classification (ASC) is designed to identify the sentiment orientation of given aspect terms in a sentence. Previous neural networks have used attention mechanisms to align context words with the appropriate aspect terms. Without considering syntactic dependencies, these models may erroneously focus on context words that are not related to the aspect terms. To address this issue, the graph convolution network (GCN) and the graph attention network (GAT) are proposed to build a graph based on the dependency parse tree, allowing the representations of context words to be propagated to the aspect terms according to their syntactic dependencies. However, these models consider all syntactic dependencies to be of the same type, and thus may result in inappropriate propagation of word representations in the graph. To further distinguish between the syntactic dependencies, this study proposes a syntactic graph attention network (SGAN) to incorporate the knowledge of dependency types into the GAT. The dependency types are modeled as edge embeddings to learn the attention weight of each edge according to its dependency type. By considering different dependency types and their weights, the proposed method can block inappropriate propagation to better associate the context words to aspect terms. To increase training process stability and enrich the diversity of graph representations, a weighted multihead attention is applied to compose the graph representations generated by different heads. The experimental results on five benchmark datasets show that the SGAN yields more accurate results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pu发布了新的文献求助10
刚刚
wuliww发布了新的文献求助10
刚刚
知性的紫寒完成签到,获得积分10
刚刚
1秒前
王炎完成签到 ,获得积分10
1秒前
小龚完成签到 ,获得积分10
1秒前
小二郎应助明昼采纳,获得10
2秒前
Hello应助个性的汲采纳,获得10
3秒前
蜜桃小丸子完成签到 ,获得积分10
3秒前
bkagyin应助陌上人采纳,获得20
3秒前
3秒前
5秒前
5秒前
5秒前
ddd发布了新的文献求助10
6秒前
寂寞的雁发布了新的文献求助10
6秒前
现代的访曼应助电闪采纳,获得20
6秒前
果实发布了新的文献求助10
7秒前
HEIKU完成签到,获得积分0
7秒前
温馨完成签到 ,获得积分10
7秒前
希望天下0贩的0应助shiyi采纳,获得10
8秒前
Akim应助pu采纳,获得10
8秒前
8秒前
8秒前
xing完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
10秒前
贪玩的芸发布了新的文献求助10
10秒前
和谐青寒发布了新的文献求助10
10秒前
研友_8YKmvn完成签到,获得积分10
10秒前
bao完成签到,获得积分10
11秒前
11秒前
火鸡味锅巴完成签到,获得积分10
13秒前
13秒前
起名应助123采纳,获得20
14秒前
大个应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
yizhiGao应助科研通管家采纳,获得10
14秒前
李清湛完成签到,获得积分10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149