Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis

计算机科学 图形 判决 解析 依赖关系(UML) 人工智能 依赖关系图 自然语言处理 依存语法 理论计算机科学
作者
Yuan Li,Jin Wang,Liang-Chih Yu,Xuejie Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (1): 140-153 被引量:12
标识
DOI:10.1109/tai.2022.3227535
摘要

Aspect-level sentiment classification (ASC) is designed to identify the sentiment orientation of given aspect terms in a sentence. Previous neural networks have used attention mechanisms to align context words with the appropriate aspect terms. Without considering syntactic dependencies, these models may erroneously focus on context words that are not related to the aspect terms. To address this issue, the graph convolution network (GCN) and the graph attention network (GAT) are proposed to build a graph based on the dependency parse tree, allowing the representations of context words to be propagated to the aspect terms according to their syntactic dependencies. However, these models consider all syntactic dependencies to be of the same type, and thus may result in inappropriate propagation of word representations in the graph. To further distinguish between the syntactic dependencies, this study proposes a syntactic graph attention network (SGAN) to incorporate the knowledge of dependency types into the GAT. The dependency types are modeled as edge embeddings to learn the attention weight of each edge according to its dependency type. By considering different dependency types and their weights, the proposed method can block inappropriate propagation to better associate the context words to aspect terms. To increase training process stability and enrich the diversity of graph representations, a weighted multihead attention is applied to compose the graph representations generated by different heads. The experimental results on five benchmark datasets show that the SGAN yields more accurate results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
星辰大海应助jy采纳,获得10
2秒前
3秒前
我是站长才怪应助Khr1stINK采纳,获得10
3秒前
4秒前
xh完成签到,获得积分10
5秒前
para_团结完成签到,获得积分10
6秒前
怡然剑成发布了新的文献求助10
6秒前
7秒前
7秒前
ipeakkka发布了新的文献求助10
7秒前
George完成签到,获得积分10
9秒前
WDK完成签到,获得积分10
9秒前
情怀应助敏感的芷采纳,获得10
9秒前
Orange应助方勇飞采纳,获得10
10秒前
FashionBoy应助烂漫驳采纳,获得10
10秒前
11秒前
12秒前
大鱼完成签到,获得积分10
12秒前
12秒前
lu完成签到,获得积分10
13秒前
Murphy完成签到 ,获得积分10
13秒前
斯文败类应助大方嵩采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得30
14秒前
hh应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得20
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
sutharsons应助科研通管家采纳,获得200
15秒前
orixero应助科研通管家采纳,获得10
15秒前
许多知识发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824