医学
免疫疗法
T细胞
癌症免疫疗法
癌症
免疫系统
免疫检查点
免疫学
癌症研究
内科学
作者
Andrew Chow,Karlo Perica,Christopher A. Klebanoff,Jedd D. Wolchok
标识
DOI:10.1038/s41571-022-00689-z
摘要
Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The ‘un-exhausting’ of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy. T cells are key effectors of immunotherapies that have revolutionized the treatment of cancer; however, chronic exposure to tumour-associated antigens can result in progressive loss of T cell effector functions and self-renewal capacity, a state termed ‘T cell exhaustion’ that is believed to limit the efficacy of immunotherapy. This Review synthesizes the new immunobiological insights that present a more nuanced view beyond T cell exhaustion being entirely undesirable and indicate that this hypofunctional state might be as much a reflection as it is the cause of poor tumour control. Hence, the authors describe how, in certain contexts, interruption of this programme could impair T cell persistence and discuss interventions to mitigate the development of T cell exhaustion that might ultimately improve clinical outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI