生物
茄丝核菌
效应器
拟南芥
植物抗病性
植物免疫
微生物学
基因
细胞生物学
遗传学
植物
突变体
作者
Xianyu Niu,Naoki Yamamoto,Guijing Yang,Hui Lin,Linjia Jiang,Yao Liu,Aiping Zheng
标识
DOI:10.1016/j.micres.2022.127219
摘要
The necrotrophic phytopathogen Rhizoctonia solani (R. solani) causes disease in many plant species. This fungal genome encodes abundant small cysteine-rich (SCR)-secreted proteins in R. solani that may induce pathogenesis. To test their molecular functions, we introduced 10 SCR-secreted protein genes from R. solani into tobacco leaves via agroinfiltration. Consequently, we identified RsMf8HN, a novel SCR protein that triggers cell death and an oxidative burst in tobacco. RsMf8HN comprises 182 amino acids (aa), including a signal peptide (SP) of 17aa, and the protein has unique features: it is orthologous to an allergen protein Mal f 8 occurring in Malassezia species, and possesses a high glycine and serine content. RsMf8HN is coded in a genomic location along with its paralogues and a few other effector candidates. The elicitation of plant immunity by RsMf8HN was dependent on HSP90 and SGT1. RsMf8HN was translocated to multiple locations within the host cells: i.e., nuclei, chloroplasts, and plasma membranes. We confirmed the occurrence of in vivo cross-interactions of RsMf8HN with a rice molecule, the heavy metal-associated isoprenylated plant protein OsHIPP28, which is a protein related to the disease susceptibility factor Pi21. In summary, our results suggest that RsMf8HN is a potential effector that enables necrotrophic phytopathogens to interfere with host plant immunity.
科研通智能强力驱动
Strongly Powered by AbleSci AI