Semi-supervised Learning for Multi-label Video Action Detection

计算机科学 加权 半监督学习 标记数据 人工智能 动作识别 动作(物理) 监督学习 模式识别(心理学) 机器学习 人工神经网络 班级(哲学) 量子力学 医学 物理 放射科
作者
Hongcheng Zhang,Xu Zhao,Dongqi Wang
标识
DOI:10.1145/3503161.3547980
摘要

Semi-supervised multi-label video action detection aims to locate all the persons and recognize their multiple action labels by leveraging both labeled and unlabeled videos. Compared to the single-label scenario, semi-supervised learning in multi-label video action detection is more challenging due to two significant issues: generation of multiple pseudo labels and class-imbalanced data distribution. In this paper, we propose an effective semi-supervised learning method to tackle these challenges. Firstly, to make full use of the informative unlabeled data for better training, we design an effective multiple pseudo labeling strategy by setting dynamic learnable threshold for each class. Secondly, to handle the long-tailed distribution for each class, we propose the unlabeled class balancing strategy. We select training samples according to the multiple pseudo labels generated during the training iteration, instead of the usual data re-sampling that requires label information before training. Then the balanced re-weighting is leveraged to mitigate the class imbalance caused by multi-label co-occurrence. Extensive experiments conducted on two challenging benchmarks, AVA and UCF101-24, demonstrate the effectiveness of our proposed designs. By using the unlabeled data effectively, our method achieves the state-of-the-art performance in video action detection on both AVA and UCF101-24 datasets. Besides, it can still achieve competitive performance compared with fully-supervised methods when using limited annotations on AVA dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的CFX关注了科研通微信公众号
刚刚
CipherSage应助徐茂瑜采纳,获得10
1秒前
1秒前
朴素亦绿发布了新的文献求助10
2秒前
pzh完成签到,获得积分20
2秒前
唔西迪西完成签到,获得积分10
2秒前
小鹅发布了新的文献求助10
3秒前
TTTTTT发布了新的文献求助10
4秒前
langwei完成签到,获得积分10
5秒前
阿南发布了新的文献求助10
5秒前
8秒前
8秒前
8秒前
今后应助122采纳,获得10
10秒前
10秒前
zah完成签到,获得积分10
11秒前
热情的跳跳糖完成签到,获得积分20
12秒前
12秒前
风起发布了新的文献求助10
13秒前
13秒前
迅速的易巧完成签到 ,获得积分10
14秒前
徐茂瑜发布了新的文献求助10
14秒前
唔西迪西发布了新的文献求助10
14秒前
阔达千秋完成签到,获得积分10
15秒前
包容南琴完成签到 ,获得积分10
16秒前
zhangzj发布了新的文献求助10
16秒前
17秒前
我是老大应助钦川采纳,获得10
17秒前
深情飞丹完成签到 ,获得积分10
18秒前
19秒前
dreamode应助何1采纳,获得10
19秒前
20秒前
hhhh完成签到,获得积分20
21秒前
Xiang Li发布了新的文献求助10
21秒前
Singularity应助默默的冬菱采纳,获得10
21秒前
22秒前
菠萝菠萝哒应助ty采纳,获得20
22秒前
仲某某发布了新的文献求助10
22秒前
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459747
求助须知:如何正确求助?哪些是违规求助? 3054034
关于积分的说明 9040088
捐赠科研通 2743366
什么是DOI,文献DOI怎么找? 1504785
科研通“疑难数据库(出版商)”最低求助积分说明 695429
邀请新用户注册赠送积分活动 694709