Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study

逻辑回归 接收机工作特性 医学 机器学习 回顾性队列研究 随机森林 围手术期 阿达布思 人工智能 统计 内科学 外科 计算机科学 数学 支持向量机
作者
Yuxiang Song,Xiao‐dong Yang,Yungen Luo,Chun‐lei Ouyang,Yao Yu,Yulong Ma,Hao Li,Jingsheng Lou,Yanhong Liu,Yi‐qiang Chen,jiangbei cao,Weidong Mi
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
标识
DOI:10.1111/cns.13991
摘要

Aims To compare the performance of logistic regression and machine learning methods in predicting postoperative delirium (POD) in elderly patients. Method This was a retrospective study of perioperative medical data from patients undergoing non-cardiac and non-neurology surgery over 65 years old from January 2014 to August 2019. Forty-six perioperative variables were used to predict POD. A traditional logistic regression and five machine learning models (Random Forest, GBM, AdaBoost, XGBoost, and a stacking ensemble model) were compared by the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and precision. Results In total, 29,756 patients were enrolled, and the incidence of POD was 3.22% after variable screening. AUCs were 0.783 (0.765–0.8) for the logistic regression method, 0.78 for random forest, 0.76 for GBM, 0.74 for AdaBoost, 0.73 for XGBoost, and 0.77 for the stacking ensemble model. The respective sensitivities for the 6 aforementioned models were 74.2%, 72.2%, 76.8%, 63.6%, 71.6%, and 67.4%. The respective specificities for the 6 aforementioned models were 70.7%, 99.8%, 96.5%, 98.8%, 96.5%, and 96.1%. The respective precision values for the 6 aforementioned models were 7.8%, 52.3%, 55.6%, 57%, 54.5%, and 56.4%. Conclusions The optimal application of the logistic regression model could provide quick and convenient POD risk identification to help improve the perioperative management of surgical patients because of its better sensitivity, fewer variables, and easier interpretability than the machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
jerseyxin发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
9秒前
hy完成签到 ,获得积分10
11秒前
fomo完成签到,获得积分10
11秒前
陈槊诸完成签到 ,获得积分10
15秒前
lee完成签到 ,获得积分0
16秒前
11完成签到 ,获得积分10
16秒前
jerseyxin完成签到,获得积分10
16秒前
太叔丹翠完成签到 ,获得积分10
17秒前
shouz完成签到,获得积分10
30秒前
hadfunsix完成签到 ,获得积分10
32秒前
34秒前
36秒前
YJ完成签到 ,获得积分10
37秒前
hwa完成签到,获得积分10
38秒前
marc107发布了新的文献求助10
39秒前
争当科研巨匠完成签到,获得积分10
39秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
简单应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
萧萧应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
简单应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
共享精神应助科研通管家采纳,获得10
43秒前
萧萧应助科研通管家采纳,获得10
43秒前
简单应助科研通管家采纳,获得10
43秒前
李y梅子完成签到 ,获得积分10
43秒前
开放飞阳完成签到,获得积分10
43秒前
darcy完成签到,获得积分10
43秒前
Astra完成签到,获得积分10
46秒前
步步高完成签到,获得积分10
47秒前
奥丁不言语完成签到 ,获得积分10
49秒前
CLTTTt完成签到,获得积分10
50秒前
Loey完成签到,获得积分10
51秒前
西宁完成签到,获得积分10
56秒前
HopeLee完成签到,获得积分10
56秒前
yq完成签到 ,获得积分20
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559