Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study

逻辑回归 接收机工作特性 医学 机器学习 回顾性队列研究 随机森林 围手术期 阿达布思 人工智能 统计 内科学 外科 计算机科学 数学 支持向量机
作者
Yuxiang Song,Xiao‐dong Yang,Yungen Luo,Chun‐lei Ouyang,Yao Yu,Yulong Ma,Hao Li,Jingsheng Lou,Yanhong Liu,Yi‐qiang Chen,jiangbei cao,Weidong Mi
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
标识
DOI:10.1111/cns.13991
摘要

Aims To compare the performance of logistic regression and machine learning methods in predicting postoperative delirium (POD) in elderly patients. Method This was a retrospective study of perioperative medical data from patients undergoing non-cardiac and non-neurology surgery over 65 years old from January 2014 to August 2019. Forty-six perioperative variables were used to predict POD. A traditional logistic regression and five machine learning models (Random Forest, GBM, AdaBoost, XGBoost, and a stacking ensemble model) were compared by the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and precision. Results In total, 29,756 patients were enrolled, and the incidence of POD was 3.22% after variable screening. AUCs were 0.783 (0.765–0.8) for the logistic regression method, 0.78 for random forest, 0.76 for GBM, 0.74 for AdaBoost, 0.73 for XGBoost, and 0.77 for the stacking ensemble model. The respective sensitivities for the 6 aforementioned models were 74.2%, 72.2%, 76.8%, 63.6%, 71.6%, and 67.4%. The respective specificities for the 6 aforementioned models were 70.7%, 99.8%, 96.5%, 98.8%, 96.5%, and 96.1%. The respective precision values for the 6 aforementioned models were 7.8%, 52.3%, 55.6%, 57%, 54.5%, and 56.4%. Conclusions The optimal application of the logistic regression model could provide quick and convenient POD risk identification to help improve the perioperative management of surgical patients because of its better sensitivity, fewer variables, and easier interpretability than the machine learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘仁轨发布了新的文献求助10
1秒前
1秒前
朱凌霄给朱凌霄的求助进行了留言
1秒前
2秒前
酷波er应助半夏彗采纳,获得10
3秒前
3秒前
shinysparrow应助挖掘机采纳,获得100
3秒前
老实憨厚的笑笑完成签到,获得积分10
4秒前
4秒前
4秒前
孙琳发布了新的文献求助10
5秒前
obcx完成签到,获得积分10
6秒前
桐桐应助wjx采纳,获得10
6秒前
variant完成签到,获得积分20
6秒前
陈依晴发布了新的文献求助10
7秒前
7秒前
wdlc发布了新的文献求助20
7秒前
开心发布了新的文献求助10
8秒前
科研通AI2S应助accept采纳,获得10
8秒前
8秒前
8秒前
老迟到的馒头完成签到,获得积分10
8秒前
9秒前
9秒前
lbw发布了新的文献求助10
9秒前
variant发布了新的文献求助10
9秒前
10秒前
小花花发布了新的文献求助10
10秒前
善学以致用应助孙琳采纳,获得10
10秒前
11秒前
12秒前
赞美太阳公公完成签到,获得积分20
12秒前
12秒前
孤独寻云发布了新的文献求助50
13秒前
catalyst完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
JamesPei应助淡然的夜柳采纳,获得10
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298