Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study

逻辑回归 接收机工作特性 医学 机器学习 回顾性队列研究 随机森林 围手术期 阿达布思 人工智能 统计 内科学 外科 计算机科学 数学 支持向量机
作者
Yuxiang Song,Xiao‐dong Yang,Yungen Luo,Chun‐lei Ouyang,Yao Yu,Yulong Ma,Hao Li,Jingsheng Lou,Yanhong Liu,Yi‐qiang Chen,jiangbei cao,Weidong Mi
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
标识
DOI:10.1111/cns.13991
摘要

Aims To compare the performance of logistic regression and machine learning methods in predicting postoperative delirium (POD) in elderly patients. Method This was a retrospective study of perioperative medical data from patients undergoing non-cardiac and non-neurology surgery over 65 years old from January 2014 to August 2019. Forty-six perioperative variables were used to predict POD. A traditional logistic regression and five machine learning models (Random Forest, GBM, AdaBoost, XGBoost, and a stacking ensemble model) were compared by the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and precision. Results In total, 29,756 patients were enrolled, and the incidence of POD was 3.22% after variable screening. AUCs were 0.783 (0.765–0.8) for the logistic regression method, 0.78 for random forest, 0.76 for GBM, 0.74 for AdaBoost, 0.73 for XGBoost, and 0.77 for the stacking ensemble model. The respective sensitivities for the 6 aforementioned models were 74.2%, 72.2%, 76.8%, 63.6%, 71.6%, and 67.4%. The respective specificities for the 6 aforementioned models were 70.7%, 99.8%, 96.5%, 98.8%, 96.5%, and 96.1%. The respective precision values for the 6 aforementioned models were 7.8%, 52.3%, 55.6%, 57%, 54.5%, and 56.4%. Conclusions The optimal application of the logistic regression model could provide quick and convenient POD risk identification to help improve the perioperative management of surgical patients because of its better sensitivity, fewer variables, and easier interpretability than the machine learning model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Culto发布了新的文献求助10
刚刚
zhaihaixu发布了新的文献求助10
1秒前
传奇3应助Benjamin采纳,获得30
1秒前
白蓝发布了新的文献求助10
2秒前
2秒前
liu发布了新的文献求助10
3秒前
4秒前
尚秋月完成签到,获得积分10
4秒前
piedpiper完成签到,获得积分10
4秒前
快乐乐松发布了新的文献求助10
5秒前
负责啤酒完成签到,获得积分10
5秒前
超级天川发布了新的文献求助10
5秒前
Shuhe_Gong完成签到 ,获得积分10
6秒前
慕青应助着急的笑旋采纳,获得10
6秒前
橙子完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
蛐蛐儿完成签到,获得积分10
8秒前
9秒前
LBQ完成签到,获得积分10
9秒前
领导范儿应助123采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
852应助科研通管家采纳,获得20
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
初心路完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
马龙完成签到,获得积分10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
zhu完成签到,获得积分20
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652693
求助须知:如何正确求助?哪些是违规求助? 4787996
关于积分的说明 15061272
捐赠科研通 4811158
什么是DOI,文献DOI怎么找? 2573692
邀请新用户注册赠送积分活动 1529549
关于科研通互助平台的介绍 1488312