Three‐dimensional dose and LETD prediction in proton therapy using artificial neural networks

公制(单位) 质子疗法 核医学 质子 人工神经网络 线性能量转移 数学 试验装置 放射治疗计划 放射治疗 统计 人工智能 医学 计算机科学 物理 辐射 内科学 光学 核物理学 经济 运营管理
作者
Fakhriddin Pirlepesov,Lydia Wilson,V Moskvin,Alexander Breuer,Franz Parkins,John T. Lucas,Thomas E. Merchant,Austin M. Faught
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7417-7427 被引量:3
标识
DOI:10.1002/mp.16043
摘要

Challenges in proton therapy include identifying patients most likely to benefit; ensuring consistent, high-quality plans as its adoption becomes more widespread; and recognizing biological uncertainties that may be related to increased relative biologic effectiveness driven by linear energy transfer (LET). Knowledge-based planning (KBP) is a domain that may help to address all three.Artificial neural networks were trained using 117 unique treatment plans and associated dose and dose-weighted LET (LETD ) distributions. The data set was split into training (n = 82), validation (n = 17), and test (n = 18) sets. Model performance was evaluated on the test set using dose- and LETD -volume metrics in the clinical target volume (CTV) and nearby organs at risk and Dice similarity coefficients (DSC) comparing predicted and planned isodose lines at 50%, 75%, and 95% of the prescription dose.Dose-volume metrics significantly differed (α = 0.05) between predicted and planned dose distributions in only one dose-volume metric, D2% to the CTV. The maximum observed root mean square (RMS) difference between corresponding metrics was 4.3 GyRBE (8% of prescription) for D1cc to optic chiasm. DSC were 0.90, 0.93, and 0.88 for the 50%, 75%, and 95% isodose lines, respectively. LETD -volume metrics significantly differed in all but one metric, L0.1cc of the brainstem. The maximum observed difference in RMS differences for LETD metrics was 1.0 keV/μm for L0.1cc to brainstem.We have devised the first three-dimensional dose and LETD -prediction model for cranial proton radiation therapy has been developed. Dose accuracy compared favorably with that of previously published models in other treatment sites. The agreement in LETD supports future investigations with biological doses in mind to enable the full potential of KBP in proton therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
云清发布了新的文献求助10
2秒前
wch666发布了新的文献求助10
3秒前
Cheng发布了新的文献求助10
4秒前
手可摘星辰完成签到 ,获得积分10
4秒前
5秒前
5秒前
7秒前
tzj发布了新的文献求助30
8秒前
不想起昵称完成签到 ,获得积分10
9秒前
H7发布了新的文献求助10
10秒前
桐桐应助科研通管家采纳,获得10
12秒前
顾矜应助Cheng采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
轩辕寄风应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
凯凯完成签到,获得积分10
14秒前
14秒前
无误发布了新的文献求助10
15秒前
H7完成签到,获得积分10
15秒前
15秒前
科研通AI5应助安安采纳,获得10
16秒前
18秒前
Ava应助雄鹰般的女人采纳,获得10
19秒前
STARY发布了新的文献求助30
19秒前
大Doctor陈发布了新的文献求助10
19秒前
nannan完成签到,获得积分10
19秒前
22秒前
调皮的思松完成签到,获得积分10
23秒前
淡淡涫发布了新的文献求助10
23秒前
zz完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182