ITran: A novel transformer-based approach for industrial anomaly detection and localization

计算机科学 异常检测 变压器 嵌入 人工智能 模式识别(心理学) 数据挖掘 电压 工程类 电气工程
作者
Xiangyu Cai,Ruliang Xiao,Zhixia Zeng,Ping Gong,Youcong Ni
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106677-106677 被引量:19
标识
DOI:10.1016/j.engappai.2023.106677
摘要

Anomaly detection is currently an essential quality monitoring process in industrial production. It is often affected by factors such as under or over reconstruction of images and unclear criteria for feature distribution evaluation, thus making it challenging to improve detection performance. To solve the above problems, this paper proposes a novel transformer-based approach, Inductive Transformer (ITran) for industrial anomaly detection and localization, which utilizes a multi-layer pyramid structure and multi-level jump connections to extract multi-scale features of the data, putting the anomaly detection into the feature space and achieving more accurate industrial anomaly detection and localization results. It incorporates inductive bias and convolution operations into the Transformer which helps to break the myth of Transformer being "data hungry". Compared with the common Transformers, ITran significantly reduces the computational cost and memory usage and makes it work well on small datasets. In addition, we basically eliminate the effect of positional embedding on the proposed Transformer model. Sufficient experiments have been conducted to validate global anomaly detection on three datasets MNIST, Fashion-MNST and Cifar-10, as well as local anomaly detection on the industrial datasets MVTec AD, Concrete Crack Image and BTAD. The proposed ITran achieves outstanding results on all the above datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxiangyu完成签到,获得积分10
刚刚
1秒前
乐开欣完成签到,获得积分10
2秒前
汉堡包应助小高采纳,获得10
2秒前
仙都丽娜应助小高采纳,获得10
2秒前
小二郎应助小高采纳,获得10
2秒前
纪间完成签到,获得积分10
5秒前
5秒前
JingyuHuang发布了新的文献求助150
7秒前
7秒前
8秒前
XXXXL完成签到,获得积分10
8秒前
loyal发布了新的文献求助10
10秒前
小小怪完成签到 ,获得积分10
11秒前
脑洞疼应助风趣怜烟采纳,获得15
11秒前
11秒前
木木发布了新的文献求助10
11秒前
搜集达人应助小高采纳,获得10
12秒前
Hello应助小高采纳,获得10
12秒前
12秒前
搜集达人应助小高采纳,获得10
12秒前
科研通AI2S应助小高采纳,获得10
12秒前
打打应助小高采纳,获得10
12秒前
白告应助小高采纳,获得10
12秒前
汉堡包应助小高采纳,获得30
12秒前
天天快乐应助小高采纳,获得10
12秒前
完美世界应助小高采纳,获得30
12秒前
小二郎应助小高采纳,获得10
12秒前
阿俊1212发布了新的文献求助10
12秒前
13秒前
bkagyin应助奔跑西木采纳,获得10
13秒前
Zachary完成签到 ,获得积分10
13秒前
志可刘发布了新的文献求助10
13秒前
GAOYI发布了新的文献求助10
15秒前
15秒前
jyh完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545