肺表面活性物质
PEG比率
机制(生物学)
材料科学
化学工程
业务
工程类
物理
财务
量子力学
作者
Mengdi Xu,Fangyu Guo,Xicheng Bao,Xiahui Gui,Yaowen Xing,Yijun Cao
出处
期刊:ACS omega
[American Chemical Society]
日期:2023-07-19
卷期号:8 (30): 27429-27438
被引量:3
标识
DOI:10.1021/acsomega.3c02863
摘要
In the flotation process, the frother, which is typically a surfactant, can be added to the pulp to reduce the surface tension and create stable foam. Currently, the nonionic mixed surfactant is widely employed as the frother for fine coal flotation. In this study, we focused on examining the foam properties of a mixed surfactant comprising short-chain methyl isobutyl carbinol (MIBC) and long-chain polyethylene glycol-1000 (PEG). Analytical techniques such as surface tension measurement, dynamic foam stability measurement, bubble morphology observation, and foam film drainage measurement were used to investigate the foam properties in single and mixed surfactant solution from a macroscopic scale to a microscopic scale. The surface tension results indicated that PEG exhibited higher surface activity than MIBC, and the addition of PEG to MIBC resulted in a significant reduction in solution surface tension. The dynamic foam stability analysis revealed that the incorporation of a small amount of PEG into MIBC solution notably improved foam stability. Furthermore, the addition of PEG to the MIBC solution led to a shift in the bubble size distribution curve from a "double peak" to a "single peak" shape. This shift indicated a substantial reduction in bubble size, indicating an enhanced inhibition of bubble coalescence. Additionally, the liquid film drainage rate was significantly slowed down, and the stability of the liquid film was improved upon the addition of PEG to MIBC. This improvement can be attributed to the synergistic effect of MIBC and PEG molecules adsorbed at the gas-liquid interface. The synergistic effect of mixed MIBC-PEG was due to the additional surface tension gradient created by the difference in surface activity between PEG and MIBC. This surface tension gradient enhances the Marangoni flow of surfactant molecules, thereby improving the self-healing ability of the liquid film and increasing its stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI