OCR using CRNN: A Deep Learning Approach for Text Recognition

计算机科学 水准点(测量) 人工智能 循环神经网络 光学字符识别 卷积神经网络 模式识别(心理学) 深度学习 像素 图像(数学) 语音识别 人工神经网络 大地测量学 地理
作者
Aditya Yadav,Shauryan Singh,M.I. Siddique,Nileshkumar Mehta,Archana Kotangale
标识
DOI:10.1109/incet57972.2023.10170436
摘要

Optical Character Recognition (OCR) is a widely used technology that converts image text or handwritten text into digital form. However, recognizing handwritten text, printed text, and image text poses a significant challenge due to variations in writing styles and the complexity of characters. This paper proposes a novel approach for OCR using Convolutional Recurrent Neural Network (CRNN) that combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The proposed CRNN architecture can automatically learn and extract features from raw image pixels and recognize sequential patterns of characters. This research paper presents a robust OCR system using CRNN architecture with 7 convolutional layers and 2 LSTM layers for recognizing text in images with complex backgrounds and varying fonts. The proposed system achieved state-of-the-art performance on several benchmark datasets, demonstrating the effectiveness of the proposed approach. Our experimental results demonstrate that the proposed CRNN approach is better than other methods and achieves higher accuracy with less latency in recognizing text from an image. We also analyze the impact of different parameters, such as the number of layers, filter sizes, and hidden units, on the performance of the CRNN model. This paper provides a comprehensive study on OCR using CRNN and its potential to improve the accuracy and efficiency of recognizing text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wocala发布了新的文献求助10
刚刚
1秒前
2秒前
呆萌的世德完成签到,获得积分10
2秒前
甜甜的豆芽完成签到 ,获得积分10
3秒前
寒江孤影完成签到,获得积分10
3秒前
SciGPT应助有机分子笼采纳,获得10
3秒前
zhu完成签到 ,获得积分10
4秒前
你猜发布了新的文献求助10
4秒前
4秒前
陈曦发布了新的文献求助10
5秒前
5秒前
11完成签到 ,获得积分10
5秒前
开心超人完成签到,获得积分10
5秒前
无花果应助杨杨爱科研采纳,获得10
6秒前
清茶旧友完成签到,获得积分10
6秒前
6秒前
紫色de泡沫完成签到,获得积分10
6秒前
孙福禄应助wfunny采纳,获得10
7秒前
时闲应助z掌握一下采纳,获得10
7秒前
wocala完成签到,获得积分10
8秒前
koko完成签到,获得积分10
8秒前
吕奎完成签到,获得积分10
8秒前
9秒前
fzzzzlucy应助T拐拐采纳,获得10
9秒前
伏城完成签到 ,获得积分10
9秒前
SYLH应助leodu采纳,获得10
9秒前
懂事梨完成签到,获得积分20
9秒前
17self完成签到,获得积分10
10秒前
上官若男应助mm采纳,获得10
10秒前
10秒前
书虫发布了新的文献求助10
12秒前
12秒前
阉太狼完成签到,获得积分10
13秒前
Gdhdjxbbx完成签到,获得积分10
13秒前
小蘑菇应助CHBW采纳,获得10
13秒前
爆米花应助hhm采纳,获得10
13秒前
14秒前
kk完成签到,获得积分10
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650