已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

OCR using CRNN: A Deep Learning Approach for Text Recognition

计算机科学 水准点(测量) 人工智能 循环神经网络 光学字符识别 卷积神经网络 模式识别(心理学) 深度学习 像素 图像(数学) 语音识别 人工神经网络 大地测量学 地理
作者
Aditya Yadav,Shauryan Singh,M.I. Siddique,Nileshkumar Mehta,Archana Kotangale
标识
DOI:10.1109/incet57972.2023.10170436
摘要

Optical Character Recognition (OCR) is a widely used technology that converts image text or handwritten text into digital form. However, recognizing handwritten text, printed text, and image text poses a significant challenge due to variations in writing styles and the complexity of characters. This paper proposes a novel approach for OCR using Convolutional Recurrent Neural Network (CRNN) that combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The proposed CRNN architecture can automatically learn and extract features from raw image pixels and recognize sequential patterns of characters. This research paper presents a robust OCR system using CRNN architecture with 7 convolutional layers and 2 LSTM layers for recognizing text in images with complex backgrounds and varying fonts. The proposed system achieved state-of-the-art performance on several benchmark datasets, demonstrating the effectiveness of the proposed approach. Our experimental results demonstrate that the proposed CRNN approach is better than other methods and achieves higher accuracy with less latency in recognizing text from an image. We also analyze the impact of different parameters, such as the number of layers, filter sizes, and hidden units, on the performance of the CRNN model. This paper provides a comprehensive study on OCR using CRNN and its potential to improve the accuracy and efficiency of recognizing text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗诗云完成签到 ,获得积分10
1秒前
Zoo完成签到,获得积分10
2秒前
4秒前
flow完成签到 ,获得积分10
4秒前
4秒前
我是老大应助科研小白采纳,获得10
5秒前
9秒前
10秒前
可爱牛青发布了新的文献求助10
10秒前
充电宝应助kccccccc采纳,获得10
12秒前
14秒前
14秒前
天天快乐应助幽默夜阑采纳,获得10
15秒前
15秒前
今后应助哦萨尔采纳,获得10
17秒前
17秒前
Hello应助小星小星采纳,获得10
17秒前
NexusExplorer应助朱诗佳采纳,获得10
17秒前
Amber完成签到,获得积分10
17秒前
FashionBoy应助养乐多采纳,获得10
18秒前
yuan发布了新的文献求助10
18秒前
19秒前
archiz发布了新的文献求助10
20秒前
ssc完成签到,获得积分10
20秒前
科研通AI5应助yz123采纳,获得10
21秒前
田鸿平完成签到,获得积分10
22秒前
nhscyhy完成签到,获得积分10
23秒前
23秒前
Skywalker发布了新的文献求助30
24秒前
24秒前
shjyang完成签到,获得积分0
28秒前
28秒前
小鱼完成签到 ,获得积分10
29秒前
123完成签到,获得积分20
29秒前
29秒前
蔓蔓要努力完成签到,获得积分10
29秒前
Aurora完成签到 ,获得积分10
30秒前
jackone完成签到 ,获得积分10
32秒前
哦萨尔发布了新的文献求助10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434