OCR using CRNN: A Deep Learning Approach for Text Recognition

计算机科学 水准点(测量) 人工智能 循环神经网络 光学字符识别 卷积神经网络 模式识别(心理学) 深度学习 像素 图像(数学) 语音识别 人工神经网络 大地测量学 地理
作者
Aditya Yadav,Shauryan Singh,M.I. Siddique,Nileshkumar Mehta,Archana Kotangale
标识
DOI:10.1109/incet57972.2023.10170436
摘要

Optical Character Recognition (OCR) is a widely used technology that converts image text or handwritten text into digital form. However, recognizing handwritten text, printed text, and image text poses a significant challenge due to variations in writing styles and the complexity of characters. This paper proposes a novel approach for OCR using Convolutional Recurrent Neural Network (CRNN) that combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The proposed CRNN architecture can automatically learn and extract features from raw image pixels and recognize sequential patterns of characters. This research paper presents a robust OCR system using CRNN architecture with 7 convolutional layers and 2 LSTM layers for recognizing text in images with complex backgrounds and varying fonts. The proposed system achieved state-of-the-art performance on several benchmark datasets, demonstrating the effectiveness of the proposed approach. Our experimental results demonstrate that the proposed CRNN approach is better than other methods and achieves higher accuracy with less latency in recognizing text from an image. We also analyze the impact of different parameters, such as the number of layers, filter sizes, and hidden units, on the performance of the CRNN model. This paper provides a comprehensive study on OCR using CRNN and its potential to improve the accuracy and efficiency of recognizing text.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Charail完成签到,获得积分10
刚刚
汉堡包应助hengwang采纳,获得10
1秒前
爱大美发布了新的文献求助10
1秒前
5秒前
Leo完成签到,获得积分10
6秒前
ge完成签到,获得积分10
7秒前
7秒前
Akim应助wu采纳,获得10
7秒前
lovelife完成签到,获得积分10
7秒前
阿源完成签到 ,获得积分10
10秒前
852应助欢乐的零采纳,获得10
10秒前
11秒前
霸气冰露发布了新的文献求助10
11秒前
刘仁轨发布了新的文献求助10
11秒前
xol完成签到 ,获得积分10
12秒前
14秒前
畅快莫茗完成签到,获得积分10
15秒前
谦让的之柔完成签到,获得积分10
15秒前
15秒前
猴哥完成签到,获得积分10
15秒前
王大大发布了新的文献求助30
16秒前
冰红茶完成签到,获得积分10
16秒前
鳗鱼匕发布了新的文献求助10
16秒前
17秒前
18秒前
欢乐的零完成签到,获得积分10
18秒前
WHR完成签到,获得积分10
18秒前
SciGPT应助刘仁轨采纳,获得10
18秒前
科研通AI2S应助木子安采纳,获得10
19秒前
xzy完成签到,获得积分10
19秒前
小李发布了新的文献求助10
20秒前
LLLLL完成签到,获得积分10
21秒前
幸福冬云发布了新的文献求助10
21秒前
xzy发布了新的文献求助10
22秒前
Akim应助于沁冉采纳,获得10
22秒前
欢乐的零发布了新的文献求助10
24秒前
zhang08发布了新的文献求助10
24秒前
所所应助LLLLL采纳,获得10
25秒前
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248