Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy

医学 怀孕 逻辑回归 产科 接收机工作特性 背景(考古学) 阿普加评分 妊娠期 前瞻性队列研究 出生体重 内科学 古生物学 遗传学 生物
作者
Sun Ju Lee,Gian-Gabriel P. Garcia,Kaitlyn K. Stanhope,Marissa Platner,Sheree L. Boulet
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (10): 101096-101096 被引量:2
标识
DOI:10.1016/j.ajogmf.2023.101096
摘要

The timely identification of nulliparas at high risk of adverse fetal and neonatal outcomes during pregnancy is crucial for initiating clinical interventions to prevent perinatal complications. Although machine learning methods have been applied to predict preterm birth and other pregnancy complications, many models do not provide explanations of their predictions, limiting the clinical use of the model.This study aimed to develop interpretable prediction models for a composite adverse perinatal outcome (stillbirth, neonatal death, estimated Combined Apgar score of <10, or preterm birth) at different points in time during the pregnancy and to evaluate the marginal predictive value of individual predictors in the context of a machine learning model.This was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be data, a prospective cohort study in which 10,038 nulliparous pregnant individuals with singleton pregnancies were enrolled. Here, interpretable prediction models were developed using L1-regularized logistic regression for adverse perinatal outcomes using data available at 3 study visits during the pregnancy (visit 1: 6 0/7 to 13 6/7 weeks of gestation; visit 2: 16 0/7 to 21 6/7 weeks of gestation; visit 3: 22 0/7 to 29 6/7 weeks of gestation). We identified the important predictors for each model using SHapley Additive exPlanations, a model-agnostic method of computing explanations of model predictions, and evaluated the marginal predictive value of each predictor using the DeLong test.Our interpretable machine learning model had an area under the receiver operating characteristic curves of 0.617 (95% confidence interval, 0.595-0.639; all predictor variables at visit 1), 0.652 (95% confidence interval, 0.631-0.673; all predictor variables at visit 2), and 0.673 (95% confidence interval, 0.651-0.694; all predictor variables at visit 3). For all visits, the placental biomarker inhibin A was a valuable predictor, as including inhibin A resulted in better performance in predicting adverse perinatal outcomes (P<.001, all visits). At visit 1, endoglin was also a valuable predictor (P<.001). At visit 2, free beta human chorionic gonadotropin (P=.001) and uterine artery pulsatility index (P=.023) were also valuable predictors. At visit 3, cervical length was also a valuable predictor (P<.001).Despite various advances in predictive modeling in obstetrics, the accurate prediction of adverse perinatal outcomes remains difficult. Interpretable machine learning can help clinicians understand how predictions are made, but barriers exist to the widespread clinical adoption of machine learning models for adverse perinatal outcomes. A better understanding of the evolution of risk factors for adverse perinatal outcomes throughout pregnancy is necessary for the development of effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
咖啡豆应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得50
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
清脆难胜应助科研通管家采纳,获得10
1秒前
2秒前
柳子关注了科研通微信公众号
2秒前
柳子关注了科研通微信公众号
2秒前
2秒前
李健的粉丝团团长应助WQ采纳,获得10
3秒前
顺心的莫茗完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
orixero应助hhhm采纳,获得10
6秒前
从容芮应助zhangxuhns采纳,获得10
6秒前
7秒前
李燕君发布了新的文献求助10
7秒前
7秒前
贪玩的元彤发布了新的文献求助200
8秒前
白玉汤顿首完成签到,获得积分10
8秒前
名丿发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
草木发布了新的文献求助10
11秒前
曾经阁发布了新的文献求助10
12秒前
小二郎应助白张一个脑袋采纳,获得10
12秒前
JamesPei应助鲤鱼奇遇采纳,获得10
14秒前
深情安青应助隐形之玉采纳,获得10
15秒前
任性迎南完成签到,获得积分10
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237