Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy

医学 怀孕 逻辑回归 产科 接收机工作特性 背景(考古学) 阿普加评分 妊娠期 前瞻性队列研究 出生体重 内科学 遗传学 生物 古生物学
作者
Sun Ju Lee,Gian-Gabriel P. Garcia,Kaitlyn K. Stanhope,Marissa Platner,Sheree L. Boulet
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:5 (10): 101096-101096 被引量:2
标识
DOI:10.1016/j.ajogmf.2023.101096
摘要

The timely identification of nulliparas at high risk of adverse fetal and neonatal outcomes during pregnancy is crucial for initiating clinical interventions to prevent perinatal complications. Although machine learning methods have been applied to predict preterm birth and other pregnancy complications, many models do not provide explanations of their predictions, limiting the clinical use of the model.This study aimed to develop interpretable prediction models for a composite adverse perinatal outcome (stillbirth, neonatal death, estimated Combined Apgar score of <10, or preterm birth) at different points in time during the pregnancy and to evaluate the marginal predictive value of individual predictors in the context of a machine learning model.This was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be data, a prospective cohort study in which 10,038 nulliparous pregnant individuals with singleton pregnancies were enrolled. Here, interpretable prediction models were developed using L1-regularized logistic regression for adverse perinatal outcomes using data available at 3 study visits during the pregnancy (visit 1: 6 0/7 to 13 6/7 weeks of gestation; visit 2: 16 0/7 to 21 6/7 weeks of gestation; visit 3: 22 0/7 to 29 6/7 weeks of gestation). We identified the important predictors for each model using SHapley Additive exPlanations, a model-agnostic method of computing explanations of model predictions, and evaluated the marginal predictive value of each predictor using the DeLong test.Our interpretable machine learning model had an area under the receiver operating characteristic curves of 0.617 (95% confidence interval, 0.595-0.639; all predictor variables at visit 1), 0.652 (95% confidence interval, 0.631-0.673; all predictor variables at visit 2), and 0.673 (95% confidence interval, 0.651-0.694; all predictor variables at visit 3). For all visits, the placental biomarker inhibin A was a valuable predictor, as including inhibin A resulted in better performance in predicting adverse perinatal outcomes (P<.001, all visits). At visit 1, endoglin was also a valuable predictor (P<.001). At visit 2, free beta human chorionic gonadotropin (P=.001) and uterine artery pulsatility index (P=.023) were also valuable predictors. At visit 3, cervical length was also a valuable predictor (P<.001).Despite various advances in predictive modeling in obstetrics, the accurate prediction of adverse perinatal outcomes remains difficult. Interpretable machine learning can help clinicians understand how predictions are made, but barriers exist to the widespread clinical adoption of machine learning models for adverse perinatal outcomes. A better understanding of the evolution of risk factors for adverse perinatal outcomes throughout pregnancy is necessary for the development of effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马柒柒完成签到,获得积分20
1秒前
1秒前
cici发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
uil发布了新的文献求助10
2秒前
充电宝应助YZMING采纳,获得10
4秒前
5秒前
5秒前
一颗煤炭完成签到 ,获得积分10
5秒前
gry发布了新的文献求助10
6秒前
sujinyu完成签到,获得积分10
6秒前
小蘑菇应助显隐采纳,获得10
6秒前
7秒前
ding应助ght采纳,获得60
9秒前
研友_VZG7GZ应助医学生采纳,获得10
9秒前
看书书发布了新的文献求助10
10秒前
12秒前
12秒前
zzzzzz发布了新的文献求助10
12秒前
哇哇卡哇发布了新的文献求助30
12秒前
12秒前
yizhiyetu完成签到,获得积分10
13秒前
简化为发布了新的文献求助10
13秒前
13秒前
13秒前
GAN完成签到,获得积分10
14秒前
caizhonglun完成签到,获得积分10
14秒前
16秒前
17秒前
Aoren发布了新的文献求助10
18秒前
Luo发布了新的文献求助10
19秒前
orixero应助cici采纳,获得10
20秒前
医学生发布了新的文献求助10
20秒前
852应助狂野香氛采纳,获得10
21秒前
22秒前
苏三三完成签到,获得积分10
23秒前
随遇而安完成签到,获得积分10
23秒前
医学生完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049233
求助须知:如何正确求助?哪些是违规求助? 4277322
关于积分的说明 13333357
捐赠科研通 4091953
什么是DOI,文献DOI怎么找? 2239389
邀请新用户注册赠送积分活动 1246254
关于科研通互助平台的介绍 1174828