Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy

医学 怀孕 逻辑回归 产科 接收机工作特性 背景(考古学) 阿普加评分 妊娠期 前瞻性队列研究 出生体重 内科学 古生物学 遗传学 生物
作者
Sun Ju Lee,Gian-Gabriel P. Garcia,Kaitlyn K. Stanhope,Marissa Platner,Sheree L. Boulet
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:5 (10): 101096-101096 被引量:2
标识
DOI:10.1016/j.ajogmf.2023.101096
摘要

The timely identification of nulliparas at high risk of adverse fetal and neonatal outcomes during pregnancy is crucial for initiating clinical interventions to prevent perinatal complications. Although machine learning methods have been applied to predict preterm birth and other pregnancy complications, many models do not provide explanations of their predictions, limiting the clinical use of the model.This study aimed to develop interpretable prediction models for a composite adverse perinatal outcome (stillbirth, neonatal death, estimated Combined Apgar score of <10, or preterm birth) at different points in time during the pregnancy and to evaluate the marginal predictive value of individual predictors in the context of a machine learning model.This was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be data, a prospective cohort study in which 10,038 nulliparous pregnant individuals with singleton pregnancies were enrolled. Here, interpretable prediction models were developed using L1-regularized logistic regression for adverse perinatal outcomes using data available at 3 study visits during the pregnancy (visit 1: 6 0/7 to 13 6/7 weeks of gestation; visit 2: 16 0/7 to 21 6/7 weeks of gestation; visit 3: 22 0/7 to 29 6/7 weeks of gestation). We identified the important predictors for each model using SHapley Additive exPlanations, a model-agnostic method of computing explanations of model predictions, and evaluated the marginal predictive value of each predictor using the DeLong test.Our interpretable machine learning model had an area under the receiver operating characteristic curves of 0.617 (95% confidence interval, 0.595-0.639; all predictor variables at visit 1), 0.652 (95% confidence interval, 0.631-0.673; all predictor variables at visit 2), and 0.673 (95% confidence interval, 0.651-0.694; all predictor variables at visit 3). For all visits, the placental biomarker inhibin A was a valuable predictor, as including inhibin A resulted in better performance in predicting adverse perinatal outcomes (P<.001, all visits). At visit 1, endoglin was also a valuable predictor (P<.001). At visit 2, free beta human chorionic gonadotropin (P=.001) and uterine artery pulsatility index (P=.023) were also valuable predictors. At visit 3, cervical length was also a valuable predictor (P<.001).Despite various advances in predictive modeling in obstetrics, the accurate prediction of adverse perinatal outcomes remains difficult. Interpretable machine learning can help clinicians understand how predictions are made, but barriers exist to the widespread clinical adoption of machine learning models for adverse perinatal outcomes. A better understanding of the evolution of risk factors for adverse perinatal outcomes throughout pregnancy is necessary for the development of effective interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风吹草动玉米粒完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
2秒前
4秒前
5秒前
MISA完成签到 ,获得积分10
5秒前
lyu完成签到,获得积分10
7秒前
无奈的达发布了新的文献求助10
7秒前
1993963发布了新的文献求助10
10秒前
robin_1217完成签到,获得积分10
10秒前
11秒前
Jasper应助1993963采纳,获得10
14秒前
MC123完成签到,获得积分10
15秒前
秋半梦完成签到,获得积分10
16秒前
炳灿完成签到 ,获得积分10
16秒前
发酒疯很方便吃完成签到,获得积分10
17秒前
海林完成签到 ,获得积分10
18秒前
22秒前
123完成签到 ,获得积分10
25秒前
123完成签到 ,获得积分10
27秒前
27秒前
闪闪青雪完成签到,获得积分10
29秒前
31秒前
源孤律醒完成签到 ,获得积分10
31秒前
TanXu完成签到 ,获得积分10
31秒前
33秒前
gcl完成签到,获得积分10
35秒前
38秒前
润润轩轩完成签到 ,获得积分10
41秒前
乌特拉完成签到 ,获得积分10
46秒前
MchemG应助gcl采纳,获得20
46秒前
珠珠完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
49秒前
小明完成签到 ,获得积分10
50秒前
Song完成签到,获得积分10
51秒前
Breeze完成签到 ,获得积分10
53秒前
科研顺利完成签到,获得积分10
54秒前
壮观的菠萝完成签到,获得积分10
57秒前
58秒前
爱听歌嚓茶完成签到,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603497
求助须知:如何正确求助?哪些是违规求助? 4688514
关于积分的说明 14853926
捐赠科研通 4692781
什么是DOI,文献DOI怎么找? 2540759
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471763