Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy

医学 怀孕 逻辑回归 产科 接收机工作特性 背景(考古学) 阿普加评分 妊娠期 前瞻性队列研究 出生体重 内科学 古生物学 遗传学 生物
作者
Sun Ju Lee,Gian-Gabriel P. Garcia,Kaitlyn K. Stanhope,Marissa Platner,Sheree L. Boulet
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:5 (10): 101096-101096 被引量:2
标识
DOI:10.1016/j.ajogmf.2023.101096
摘要

The timely identification of nulliparas at high risk of adverse fetal and neonatal outcomes during pregnancy is crucial for initiating clinical interventions to prevent perinatal complications. Although machine learning methods have been applied to predict preterm birth and other pregnancy complications, many models do not provide explanations of their predictions, limiting the clinical use of the model.This study aimed to develop interpretable prediction models for a composite adverse perinatal outcome (stillbirth, neonatal death, estimated Combined Apgar score of <10, or preterm birth) at different points in time during the pregnancy and to evaluate the marginal predictive value of individual predictors in the context of a machine learning model.This was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be data, a prospective cohort study in which 10,038 nulliparous pregnant individuals with singleton pregnancies were enrolled. Here, interpretable prediction models were developed using L1-regularized logistic regression for adverse perinatal outcomes using data available at 3 study visits during the pregnancy (visit 1: 6 0/7 to 13 6/7 weeks of gestation; visit 2: 16 0/7 to 21 6/7 weeks of gestation; visit 3: 22 0/7 to 29 6/7 weeks of gestation). We identified the important predictors for each model using SHapley Additive exPlanations, a model-agnostic method of computing explanations of model predictions, and evaluated the marginal predictive value of each predictor using the DeLong test.Our interpretable machine learning model had an area under the receiver operating characteristic curves of 0.617 (95% confidence interval, 0.595-0.639; all predictor variables at visit 1), 0.652 (95% confidence interval, 0.631-0.673; all predictor variables at visit 2), and 0.673 (95% confidence interval, 0.651-0.694; all predictor variables at visit 3). For all visits, the placental biomarker inhibin A was a valuable predictor, as including inhibin A resulted in better performance in predicting adverse perinatal outcomes (P<.001, all visits). At visit 1, endoglin was also a valuable predictor (P<.001). At visit 2, free beta human chorionic gonadotropin (P=.001) and uterine artery pulsatility index (P=.023) were also valuable predictors. At visit 3, cervical length was also a valuable predictor (P<.001).Despite various advances in predictive modeling in obstetrics, the accurate prediction of adverse perinatal outcomes remains difficult. Interpretable machine learning can help clinicians understand how predictions are made, but barriers exist to the widespread clinical adoption of machine learning models for adverse perinatal outcomes. A better understanding of the evolution of risk factors for adverse perinatal outcomes throughout pregnancy is necessary for the development of effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可cabd完成签到,获得积分10
刚刚
小马的可爱老婆完成签到,获得积分10
1秒前
海白完成签到,获得积分10
1秒前
认真的飞扬完成签到,获得积分10
1秒前
墨染樱飞完成签到 ,获得积分10
4秒前
ont-tnt发布了新的文献求助10
4秒前
谦让小蚂蚁完成签到,获得积分10
4秒前
4秒前
4秒前
Michelle完成签到,获得积分10
5秒前
海白发布了新的文献求助10
5秒前
5秒前
tesla完成签到,获得积分10
7秒前
SciGPT应助体贴凌柏采纳,获得10
7秒前
慎二完成签到 ,获得积分10
7秒前
9秒前
慕容冷之完成签到,获得积分10
9秒前
9秒前
leo发布了新的文献求助10
10秒前
ont-tnt完成签到,获得积分10
10秒前
sxd完成签到,获得积分10
11秒前
Daisy完成签到 ,获得积分10
11秒前
嘉1612完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助angrymax采纳,获得10
12秒前
落尘发布了新的文献求助10
13秒前
学不懂数学应助小王采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
ROOKIE完成签到,获得积分10
14秒前
14秒前
阿胡发布了新的文献求助10
15秒前
15秒前
SYLH应助wodetaiyangLLL采纳,获得10
16秒前
loey完成签到,获得积分10
16秒前
等待的音响完成签到,获得积分10
16秒前
16秒前
孙非完成签到,获得积分10
16秒前
江小鱼在查文献完成签到,获得积分10
17秒前
静xixi完成签到,获得积分20
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029