Heter-Train: A Distributed Training Framework Based on Semi-Asynchronous Parallel Mechanism for Heterogeneous Intelligent Transportation Systems

计算机科学 异步通信 分布式计算 智能交通系统 云计算 边缘计算 同步(交流) 计算机网络 GSM演进的增强数据速率 人工智能 频道(广播) 工程类 土木工程 操作系统
作者
Jiawei Geng,Jing Cao,Haipeng Jia,Zongwei Zhu,Hai Fang,Chengxi Gao,Cheng Ji,Gangyong Jia,Guangjie Han,Xuehai Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 959-972 被引量:2
标识
DOI:10.1109/tits.2023.3286400
摘要

Transportation big data (TBD) are increasingly combined with artificial intelligence to mine novel patterns and information due to the powerful representational capabilities of deep neural networks (DNNs), especially for anti-COVID19 applications. The distributed cloud-edge-vehicle training architecture has been applied to accelerate DNNs training while ensuring low latency and high privacy for TBD processing. However, multiple intelligent devices (e.g., intelligent vehicles, edge computing chips at base stations) and different networks in intelligent transportation systems lead to computing power and communication heterogeneity among distributed nodes. Existing parallel training mechanisms perform poorly on heterogeneous cloud-edge-vehicle clusters. The synchronous parallel mechanism may force fast workers to wait for the slowest worker for synchronization, thus wasting their computing power. The asynchronous mechanism has communication bottlenecks and can exacerbate the straggler problem, causing increased training iterations and even incorrect convergence. In this paper, we introduce a distributed training framework, Heter-Train. First, a communication-efficient semi-asynchronous parallel mechanism (SAP-SGD) is proposed, which can take full advantage of acceleration effect of asynchronous strategy on heterogeneous training and constrain the straggler problem by using global interval synchronization. Second, Considering the difference in node bandwidth, we design a solution for heterogeneous communication. Moreover, a novel weighted aggregation strategy is proposed to aggregate the model parameters with different versions. Finally, experimental results show that our proposed strategy can achieve up to $6.74 \times$ speedups on training time, with almost no accuracy decrease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的建辉完成签到,获得积分20
刚刚
胖心怡完成签到,获得积分10
1秒前
1秒前
浅尝离白完成签到,获得积分0
2秒前
超帅飞松完成签到,获得积分10
2秒前
优美丹雪发布了新的文献求助10
2秒前
Dailei发布了新的文献求助10
3秒前
姜姜发布了新的文献求助50
3秒前
4秒前
Gluneko发布了新的文献求助10
5秒前
hreallyy发布了新的文献求助10
5秒前
5秒前
性静H情逸完成签到,获得积分10
6秒前
深情安青应助美好安筠采纳,获得10
6秒前
6秒前
胡图图完成签到 ,获得积分10
7秒前
8秒前
超帅的凌兰完成签到,获得积分10
8秒前
luym发布了新的文献求助10
9秒前
li完成签到,获得积分10
10秒前
10秒前
lwg完成签到,获得积分10
11秒前
神勇秋白完成签到,获得积分0
11秒前
苗轩发布了新的文献求助10
12秒前
13秒前
Felix完成签到,获得积分10
14秒前
有魅力芹发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
苗儿发布了新的文献求助10
15秒前
cocolu应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
秣旎应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Hshi应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
17秒前
Billy应助科研通管家采纳,获得80
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269843
求助须知:如何正确求助?哪些是违规求助? 2909430
关于积分的说明 8349120
捐赠科研通 2579802
什么是DOI,文献DOI怎么找? 1403046
科研通“疑难数据库(出版商)”最低求助积分说明 655607
邀请新用户注册赠送积分活动 634869