Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 认识论 图像(数学) 哲学 经济 管理
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由能完成签到,获得积分10
刚刚
科目三应助浮生采纳,获得10
1秒前
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
Wind应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Wind应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得20
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
打打应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
xmy完成签到,获得积分10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
张未发布了新的文献求助10
3秒前
繁星发布了新的文献求助10
3秒前
喵喵666发布了新的文献求助10
3秒前
3秒前
王计恩发布了新的文献求助20
4秒前
5秒前
6秒前
白小纯发布了新的文献求助30
8秒前
俊逸子默应助liangliang采纳,获得10
8秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660019
求助须知:如何正确求助?哪些是违规求助? 4830914
关于积分的说明 15088949
捐赠科研通 4818636
什么是DOI,文献DOI怎么找? 2578700
邀请新用户注册赠送积分活动 1533328
关于科研通互助平台的介绍 1492061