亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 管理 经济 图像(数学) 哲学 认识论
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming应助KUIWU采纳,获得10
10秒前
Perry完成签到,获得积分0
25秒前
科研通AI6应助123采纳,获得10
26秒前
天天快乐应助没见云采纳,获得10
40秒前
123完成签到,获得积分10
44秒前
所所应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得20
49秒前
53秒前
56秒前
58秒前
1分钟前
无尽夏完成签到,获得积分10
1分钟前
隐形曼青应助xiaobizaizhi233采纳,获得10
1分钟前
WLL发布了新的文献求助10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
潼熙甄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赘婿应助Jeongin采纳,获得10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
没见云发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
秦时明月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
请输入昵称完成签到 ,获得积分10
1分钟前
Jeongin发布了新的文献求助10
1分钟前
1分钟前
Freedom完成签到 ,获得积分10
1分钟前
xiaobizaizhi233完成签到,获得积分10
2分钟前
可乐完成签到 ,获得积分10
2分钟前
2分钟前
Jeongin完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729