Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 管理 经济 图像(数学) 哲学 认识论
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风里等你完成签到,获得积分10
刚刚
赧赧完成签到 ,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
lcarus关注了科研通微信公众号
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Adc应助科研通管家采纳,获得10
2秒前
stiger应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
看文献完成签到,获得积分10
3秒前
3秒前
呆萌芙蓉完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
淮安石河子完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
娷静完成签到 ,获得积分10
11秒前
TGU的小马同学完成签到 ,获得积分10
11秒前
11秒前
老和山完成签到,获得积分10
13秒前
kusicfack完成签到,获得积分10
14秒前
15秒前
银河里完成签到 ,获得积分10
16秒前
空间完成签到 ,获得积分10
16秒前
安安完成签到,获得积分10
17秒前
NexusExplorer应助一个小胖子采纳,获得10
18秒前
笑点低的铁身完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
王丹靖完成签到 ,获得积分10
22秒前
Dsunflower完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
30秒前
apt完成签到 ,获得积分10
32秒前
35秒前
flow完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527