Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 认识论 图像(数学) 哲学 经济 管理
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助药学小团子采纳,获得10
1秒前
爆米花应助ysxl采纳,获得10
1秒前
客厅狂欢发布了新的文献求助10
1秒前
3秒前
majiko完成签到,获得积分10
3秒前
杨永乾发布了新的文献求助10
3秒前
5秒前
CHL完成签到 ,获得积分10
5秒前
7秒前
茨茨喵喵完成签到,获得积分10
7秒前
小灰灰完成签到,获得积分10
7秒前
搜集达人应助poki采纳,获得10
8秒前
酷波er应助向晚采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
灯座发布了新的文献求助10
11秒前
深竹月完成签到,获得积分10
12秒前
ccc发布了新的文献求助10
12秒前
独白完成签到 ,获得积分10
12秒前
时来运转完成签到 ,获得积分10
12秒前
欢城发布了新的文献求助10
14秒前
GEeZiii完成签到,获得积分10
14秒前
小坤不慌完成签到 ,获得积分10
14秒前
凶狗碎大石完成签到,获得积分10
16秒前
16秒前
谢大喵发布了新的文献求助10
16秒前
风清扬发布了新的文献求助10
17秒前
Linda完成签到 ,获得积分10
18秒前
fanghaoxiang发布了新的文献求助30
18秒前
寻道图强应助HH采纳,获得30
19秒前
youyou发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
汉堡包应助dd采纳,获得10
20秒前
可爱的函函应助hugdoggy采纳,获得10
21秒前
21秒前
22秒前
22秒前
chaney完成签到 ,获得积分10
22秒前
一只龟龟完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952