Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 认识论 图像(数学) 哲学 经济 管理
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjiejing完成签到,获得积分10
2秒前
huanir99发布了新的文献求助50
2秒前
3秒前
甄的艾你完成签到,获得积分10
5秒前
橙橙完成签到,获得积分10
9秒前
vic303发布了新的文献求助10
11秒前
小二郎应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
Ava应助小熊采纳,获得50
13秒前
领导范儿应助天涯小文刀采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
852应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
14秒前
槿风发布了新的文献求助30
14秒前
全科旺旺寜关注了科研通微信公众号
17秒前
指定能行完成签到,获得积分10
18秒前
huanir99完成签到,获得积分10
20秒前
21秒前
无花果应助思维隋采纳,获得10
21秒前
22秒前
24秒前
英俊的铭应助轻松的白容采纳,获得10
26秒前
AUMS发布了新的文献求助10
28秒前
wuhanfei发布了新的文献求助10
28秒前
酷炫甜瓜完成签到,获得积分10
28秒前
jou完成签到,获得积分10
31秒前
直率一刀发布了新的文献求助10
31秒前
wuhanfei完成签到,获得积分10
34秒前
35秒前
CX完成签到,获得积分10
35秒前
38秒前
大力的迎荷完成签到 ,获得积分10
38秒前
39秒前
41秒前
41秒前
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090