Detach and unite: A simple meta-transfer for few-shot learning

计算机科学 学习迁移 推论 人工智能 机器学习 元学习(计算机科学) 简单(哲学) 相似性(几何) 任务(项目管理) 管理 经济 图像(数学) 哲学 认识论
作者
Yaoyue Zheng,Xuetao Zhang,Zhiqiang Tian,Wei Zeng,Shaoyi Du
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110798-110798 被引量:10
标识
DOI:10.1016/j.knosys.2023.110798
摘要

Few-shot Learning (FSL) is a challenging problem that aims to learn and generalize from limited examples. Recent works have adopted a combination of meta-learning and transfer learning strategies for FSL tasks. These methods perform pre-training and transfer the learned knowledge to meta-learning. However, it remains unclear whether this transfer pattern is appropriate, and the objectives of the two learning strategies have not been explored. In addition, the inference of meta-learning in FSL relies on sample relations that require further consideration. In this paper, we uncover an overlooked discrepancy in learning objectives between pre-training and meta-learning strategies and propose a simple yet effective learning paradigm for the few-shot classification task. Specifically, the proposed method comprises two components: (i) Detach: We formulate an effective learning paradigm, Adaptive Meta-Transfer (A-MET), which adaptively eliminates undesired representations learned by pre-training to address the discrepancy. (ii) Unite: We propose a Global Similarity Compatibility Measure (GSCM) to jointly consider sample correlation at a global level for more consistent predictions. The proposed method is simple to implement without any complex components. Extensive experiments on four public benchmarks demonstrate that our method outperforms other state-of-the-art methods under more challenging scenarios with large domain differences between the base and novel classes and less support information available. Code is available at: https://github.com/yaoyz96/a-met.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助壹号采纳,获得10
2秒前
4秒前
Wang完成签到 ,获得积分10
5秒前
6秒前
kelaibing完成签到,获得积分10
6秒前
sakegeda完成签到,获得积分10
7秒前
curtisness应助喜悦的虔采纳,获得10
7秒前
mamama发布了新的文献求助20
8秒前
10秒前
CAST1347完成签到,获得积分10
12秒前
快乐蜗牛发布了新的文献求助10
12秒前
研友_VZG7GZ应助yangyang采纳,获得30
12秒前
幸福的雨发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助小西采纳,获得10
20秒前
25秒前
cicy发布了新的文献求助10
25秒前
老丫大侠完成签到 ,获得积分10
27秒前
Jasper应助Mess采纳,获得10
27秒前
隐形曼青应助zyyyy采纳,获得10
28秒前
ding应助幸福的雨采纳,获得10
28秒前
31秒前
孔难破完成签到,获得积分10
31秒前
Hello应助双马尾小男生2采纳,获得10
31秒前
yangyang发布了新的文献求助30
32秒前
peace完成签到 ,获得积分10
34秒前
小蘑菇应助xzccc采纳,获得10
35秒前
yao应助十七采纳,获得10
35秒前
36秒前
万能图书馆应助喜悦的虔采纳,获得10
38秒前
38秒前
JM发布了新的文献求助30
39秒前
顾矜应助跋扈采纳,获得10
39秒前
41秒前
sunshine2025完成签到,获得积分10
41秒前
Mess发布了新的文献求助10
43秒前
46秒前
哈哈哈完成签到,获得积分10
46秒前
46秒前
xzccc发布了新的文献求助10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359630
求助须知:如何正确求助?哪些是违规求助? 2982355
关于积分的说明 8703259
捐赠科研通 2664021
什么是DOI,文献DOI怎么找? 1458787
科研通“疑难数据库(出版商)”最低求助积分说明 675243
邀请新用户注册赠送积分活动 666331