Can Chinese cities reach their carbon peaks on time? Scenario analysis based on machine learning and LMDI decomposition

温室气体 北京 驱动因素 碳纤维 环境科学 环境经济学 气候变化 中国 自然资源经济学 环境工程 地理 计算机科学 经济 复合数 算法 生物 考古 生态学
作者
Qingqing Sun,Hong Cheng,Ruyin Long,Jianqiang Zhang,Menghua Yang,Han Huang,Wanqi Ma,Yujie Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:347: 121427-121427 被引量:4
标识
DOI:10.1016/j.apenergy.2023.121427
摘要

As cities are critical actors in mitigating climate change and achieving the “3060″ target, multi-scenario studies on urban carbon emissions can provide a scientific basis for formulating urban carbon peaking action plans. To remedy the problems of missing regional statistics, inconsistent caliber, and lack of city-scale studies in carbon emission research, this paper uses the sparrow optimization neural network algorithm to fit carbon emission data with nighttime stable light for training. Carbon emission data were obtained for 281 cities in China during 2000–2020. The rates of change of influencing factors are set based on shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for different periods and different scenarios. The carbon emission and carbon peaking evolution paths of service, industrial and comprehensive cities from 2021 to 2060 are dynamically simulated. The results show that (1) service cities are significantly higher than industrial and comprehensive cities in population, GDP, secondary industry output, and energy consumption. (2) The economic development effect, as the primary driver of carbon emission growth, increases and then decreases in all five categories of cities, with 2010 as the inflection point. Industrial structure improvement has an increasingly strong offsetting effect on carbon emissions and is one of the critical directions for future carbon emission reduction. (3) Service cities such as Beijing and Shanghai are already at the completion stage of urban transformation and are more likely to reach the carbon peak on their own than other types of cities. In the low carbon following scenario, comprehensive cities such as Kaifeng, Rizhao, and Jilin can achieve their carbon peaking targets efficiently. The findings of this paper can provide valid theoretical support for carbon peaking action programs in China and other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
戈壁小黄花完成签到,获得积分10
刚刚
ExtroGod发布了新的文献求助10
刚刚
沐子发布了新的文献求助10
2秒前
Jasper应助Ride采纳,获得10
2秒前
3秒前
3秒前
LEMONS发布了新的文献求助10
4秒前
Owen应助我不吃葱采纳,获得10
5秒前
深情安青应助认真的弼采纳,获得10
5秒前
郑玉成发布了新的文献求助10
5秒前
华绝山发布了新的文献求助50
6秒前
6秒前
王sir完成签到 ,获得积分10
7秒前
zdesfsfa发布了新的文献求助10
7秒前
李李李发布了新的文献求助10
8秒前
预锂化大王完成签到,获得积分10
8秒前
8秒前
车水完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助LEMONS采纳,获得10
9秒前
义气涵山发布了新的文献求助10
10秒前
凉席电扇花露水完成签到 ,获得积分10
10秒前
研友_LJeoa8完成签到,获得积分10
11秒前
xiarifeng123完成签到,获得积分10
11秒前
房房房破防啦完成签到,获得积分10
12秒前
12秒前
小赵完成签到 ,获得积分10
12秒前
12秒前
766完成签到,获得积分10
13秒前
正直诗柳完成签到,获得积分10
13秒前
桐桐应助马外奥采纳,获得10
14秒前
14秒前
15秒前
内向秋寒发布了新的文献求助10
15秒前
exia完成签到,获得积分10
15秒前
人生苦短完成签到,获得积分10
15秒前
Dino发布了新的文献求助10
16秒前
CipherSage应助鄂成危采纳,获得10
17秒前
刘老哥6发布了新的文献求助20
17秒前
YR发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012