Can Chinese cities reach their carbon peaks on time? Scenario analysis based on machine learning and LMDI decomposition

温室气体 北京 驱动因素 碳纤维 环境科学 环境经济学 气候变化 中国 自然资源经济学 环境工程 地理 计算机科学 经济 算法 复合数 生态学 考古 生物
作者
Qingqing Sun,Hong Cheng,Ruyin Long,Jianqiang Zhang,Menghua Yang,Han Huang,Wanqi Ma,Yujie Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:347: 121427-121427 被引量:4
标识
DOI:10.1016/j.apenergy.2023.121427
摘要

As cities are critical actors in mitigating climate change and achieving the “3060″ target, multi-scenario studies on urban carbon emissions can provide a scientific basis for formulating urban carbon peaking action plans. To remedy the problems of missing regional statistics, inconsistent caliber, and lack of city-scale studies in carbon emission research, this paper uses the sparrow optimization neural network algorithm to fit carbon emission data with nighttime stable light for training. Carbon emission data were obtained for 281 cities in China during 2000–2020. The rates of change of influencing factors are set based on shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) for different periods and different scenarios. The carbon emission and carbon peaking evolution paths of service, industrial and comprehensive cities from 2021 to 2060 are dynamically simulated. The results show that (1) service cities are significantly higher than industrial and comprehensive cities in population, GDP, secondary industry output, and energy consumption. (2) The economic development effect, as the primary driver of carbon emission growth, increases and then decreases in all five categories of cities, with 2010 as the inflection point. Industrial structure improvement has an increasingly strong offsetting effect on carbon emissions and is one of the critical directions for future carbon emission reduction. (3) Service cities such as Beijing and Shanghai are already at the completion stage of urban transformation and are more likely to reach the carbon peak on their own than other types of cities. In the low carbon following scenario, comprehensive cities such as Kaifeng, Rizhao, and Jilin can achieve their carbon peaking targets efficiently. The findings of this paper can provide valid theoretical support for carbon peaking action programs in China and other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao5424liu发布了新的文献求助10
1秒前
导师老八发布了新的文献求助10
1秒前
1秒前
2秒前
孙福禄应助wisper采纳,获得10
4秒前
祥云完成签到,获得积分20
5秒前
今后应助憨憨采纳,获得10
7秒前
花小胖发布了新的文献求助10
8秒前
meng若发布了新的文献求助10
9秒前
wang完成签到 ,获得积分20
10秒前
10秒前
曾天祥发布了新的文献求助10
10秒前
齐天大圣应助昏睡的蟠桃采纳,获得100
11秒前
懒熊完成签到,获得积分10
11秒前
12秒前
12秒前
scott_zip完成签到 ,获得积分10
12秒前
13秒前
czh完成签到,获得积分10
13秒前
Relax关注了科研通微信公众号
14秒前
懒熊发布了新的文献求助10
15秒前
CipherSage应助正太低音炮采纳,获得10
16秒前
大白发布了新的文献求助10
17秒前
CodeCraft应助aaaa采纳,获得10
17秒前
Kair发布了新的文献求助10
18秒前
搜集达人应助01采纳,获得10
19秒前
Yunlong发布了新的文献求助10
20秒前
dww发布了新的文献求助10
21秒前
科研通AI5应助宋子琛采纳,获得10
23秒前
小蘑菇应助曾天祥采纳,获得10
23秒前
25秒前
25秒前
彗星发布了新的文献求助10
26秒前
Rondab应助cc采纳,获得10
26秒前
斯文败类应助guaishou采纳,获得10
26秒前
27秒前
孙福禄应助LWJ采纳,获得10
28秒前
TRY完成签到,获得积分10
28秒前
索隆完成签到,获得积分10
28秒前
儒雅的蓝天完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459