Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data

重性抑郁障碍 功能磁共振成像 人工智能 时间点 计算机科学 模式识别(心理学) 心理学 神经科学 认知 哲学 美学
作者
Peishan Dai,Da Lu,Yun Q. Shi,Ying Zhou,Tong Xiong,Xiaoyan Zhou,Zailiang Chen,Beiji Zou,Hui Tang,Zijian Huang,Shenghui Liao
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:339: 511-519 被引量:2
标识
DOI:10.1016/j.jad.2023.07.077
摘要

Major depressive disorder (MDD) has a high rate of recurrence. Identifying patients with recurrent MDD is advantageous in adopting prevention strategies to reduce the disabling effects of depression. We propose a novel feature extraction method that includes dynamic temporal information, and inputs the extracted features into a graph convolutional network (GCN) to achieve classification of recurrent MDD. We extract the average time series using an atlas from resting-state functional magnetic resonance imaging (fMRI) data. Pearson correlation was calculated between brain region sequences at each time point, representing the functional connectivity at each time point. The connectivity is used as the adjacency matrix and the brain region sequences as node features for a GCN model to classify recurrent MDD. Gradient-weighted Class Activation Mapping (Grad-CAM) was used to analyze the contribution of different brain regions to the model. Brain regions making greater contribution to classification were considered to be the regions with altered brain function in recurrent MDD. We achieved a classification accuracy of 75.8 % for recurrent MDD on the multi-site dataset, the Rest-meta-MDD. The brain regions closely related to recurrent MDD have been identified. The pre-processing stage may affect the final classification performance and harmonizing site differences may improve the classification performance. The experimental results demonstrate that the proposed method can effectively classify recurrent MDD and extract dynamic changes of brain activity patterns in recurrent depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Metx完成签到 ,获得积分10
4秒前
5秒前
英俊的铭应助野性的懿轩采纳,获得10
5秒前
莫离完成签到,获得积分10
6秒前
peaunt完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
土木小牛马完成签到,获得积分10
9秒前
Akim应助鲨鱼鲨鱼鲨鱼采纳,获得10
9秒前
叶123完成签到,获得积分10
11秒前
科研通AI2S应助英俊的凡梅采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
RNNNLL应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
喜悦静枫完成签到,获得积分10
11秒前
sonny应助科研通管家采纳,获得30
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
芝麻糊应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
研友_Z14Yln应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
xkh发布了新的文献求助10
12秒前
cgliuhx发布了新的文献求助10
12秒前
李爱国应助大力的无声采纳,获得10
14秒前
YH完成签到,获得积分10
14秒前
15秒前
隐形曼青应助谢佳冀采纳,获得10
15秒前
16秒前
17秒前
爱学习爱劳动完成签到,获得积分10
17秒前
酷酷友容应助来了来了采纳,获得30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Student Solutions Manual for Physical Chemistry 9th 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460991
求助须知:如何正确求助?哪些是违规求助? 3054804
关于积分的说明 9044964
捐赠科研通 2744684
什么是DOI,文献DOI怎么找? 1505633
科研通“疑难数据库(出版商)”最低求助积分说明 695758
邀请新用户注册赠送积分活动 695173