MortCam: An Artificial Intelligence-aided fish mortality detection and alert system for recirculating aquaculture

水产养殖 人工智能 水准点(测量) 计算机科学 水下 实时计算 模拟 环境科学 渔业 生物 地图学 地理 考古
作者
Rakesh Ranjan,Kata Sharrer,Scott Tsukuda,Christopher Good
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:102: 102341-102341 被引量:5
标识
DOI:10.1016/j.aquaeng.2023.102341
摘要

Mortality is an important production and fish welfare indicator in aquaculture. Unusual mortality patterns can be associated with abiotic or/and biotic stresses on fish in recirculating aquaculture systems (RAS). Real or near real-time mortality tracking can provide valuable inputs to farm managers, to make informed RAS management decisions and address root causes in an effort to prevent mass mortality events. While traditional systems use infrequent human operator observation and tracking - often in conjunction with an underwater camera - the proposed tool (i.e., ‘MortCam’) augments this approach with Artificial Intelligence (AI) and Internet of Things (IoT) deployed at the Edge to provide round-the-clock mortality monitoring and trigger alerts when mortality thresholds are exceeded. MortCam consists of an imaging sensor integrated with an edge computing device, customized for underwater applications. MortCam was deployed in a 150 m3 circular dual-drain RAS tank at 0.6 m above the bottom drain plate to acquire the imagery data in both ambient and supplemental light conditions. The images were collected every fifteen minutes for 90 days. Acquired images were annotated either as ‘alive’ or ‘dead’ fish and split into training (70 %), validation (20 %), and test (10 %) datasets to train a custom YOLOv7 mortality detection model. The optimized mixed model achieved a mean average precision (mAP) and F1 score of 93.4 % and 0.89, respectively. Additionally, the model performed well in terms of mortality count and was found robust despite changes in the imaging conditions. The model was deployed on the MortCam to achieve round-the-clock autonomous mortality monitoring. The system reliably generated email and text alerts to notify fish production staff of unusual mortality events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木白关注了科研通微信公众号
刚刚
ZHT完成签到,获得积分10
1秒前
wujuan1606完成签到 ,获得积分10
2秒前
废羊羊完成签到 ,获得积分10
2秒前
小魏哥完成签到,获得积分10
2秒前
allzzwell完成签到 ,获得积分10
3秒前
沛沛完成签到,获得积分10
3秒前
英勇雅琴完成签到,获得积分10
3秒前
4秒前
小太阳红红火火完成签到,获得积分10
4秒前
加载文献别卡了完成签到,获得积分10
5秒前
傻傻的咖啡豆完成签到,获得积分10
5秒前
沉默的尔槐完成签到,获得积分10
5秒前
孙皓然完成签到 ,获得积分10
5秒前
6秒前
小超人到海底捉虫完成签到,获得积分10
7秒前
LZL完成签到 ,获得积分10
8秒前
窝窝头完成签到,获得积分10
8秒前
9秒前
薄荷味完成签到 ,获得积分10
10秒前
moxisi完成签到,获得积分10
10秒前
10秒前
13秒前
XieQinxie发布了新的文献求助10
13秒前
zyc1111111应助司空蓝采纳,获得20
15秒前
情怀应助111采纳,获得10
15秒前
美海与鱼完成签到,获得积分10
15秒前
顺顺利利完成签到,获得积分10
15秒前
111完成签到,获得积分10
15秒前
16秒前
典雅葶完成签到 ,获得积分10
16秒前
斯奈克发布了新的文献求助10
16秒前
POWER完成签到,获得积分10
19秒前
11完成签到,获得积分20
19秒前
Hello应助pufanlg采纳,获得10
19秒前
美丽凡阳完成签到,获得积分10
20秒前
科研顺利完成签到,获得积分10
20秒前
撑住完成签到,获得积分10
21秒前
聆琳完成签到 ,获得积分10
21秒前
汤圆完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259