MortCam: An Artificial Intelligence-aided fish mortality detection and alert system for recirculating aquaculture

水产养殖 人工智能 水准点(测量) 计算机科学 水下 实时计算 模拟 环境科学 渔业 生物 地图学 地理 考古
作者
Rakesh Ranjan,Kata Sharrer,Scott Tsukuda,Christopher Good
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:102: 102341-102341 被引量:5
标识
DOI:10.1016/j.aquaeng.2023.102341
摘要

Mortality is an important production and fish welfare indicator in aquaculture. Unusual mortality patterns can be associated with abiotic or/and biotic stresses on fish in recirculating aquaculture systems (RAS). Real or near real-time mortality tracking can provide valuable inputs to farm managers, to make informed RAS management decisions and address root causes in an effort to prevent mass mortality events. While traditional systems use infrequent human operator observation and tracking - often in conjunction with an underwater camera - the proposed tool (i.e., ‘MortCam’) augments this approach with Artificial Intelligence (AI) and Internet of Things (IoT) deployed at the Edge to provide round-the-clock mortality monitoring and trigger alerts when mortality thresholds are exceeded. MortCam consists of an imaging sensor integrated with an edge computing device, customized for underwater applications. MortCam was deployed in a 150 m3 circular dual-drain RAS tank at 0.6 m above the bottom drain plate to acquire the imagery data in both ambient and supplemental light conditions. The images were collected every fifteen minutes for 90 days. Acquired images were annotated either as ‘alive’ or ‘dead’ fish and split into training (70 %), validation (20 %), and test (10 %) datasets to train a custom YOLOv7 mortality detection model. The optimized mixed model achieved a mean average precision (mAP) and F1 score of 93.4 % and 0.89, respectively. Additionally, the model performed well in terms of mortality count and was found robust despite changes in the imaging conditions. The model was deployed on the MortCam to achieve round-the-clock autonomous mortality monitoring. The system reliably generated email and text alerts to notify fish production staff of unusual mortality events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cq_2完成签到,获得积分10
1秒前
王一刀完成签到,获得积分10
1秒前
北北完成签到 ,获得积分10
3秒前
圆圆完成签到,获得积分10
3秒前
思源应助微微采纳,获得10
3秒前
LYZSh完成签到,获得积分10
3秒前
开心的大娘完成签到,获得积分10
4秒前
5秒前
李博士发布了新的文献求助80
5秒前
woods完成签到,获得积分10
5秒前
MADAO完成签到 ,获得积分10
5秒前
langzhiquan完成签到,获得积分10
6秒前
njzhangyanyang完成签到,获得积分10
6秒前
陈天爱学习完成签到,获得积分10
7秒前
加菲丰丰应助Joey采纳,获得10
8秒前
Loong312完成签到,获得积分10
9秒前
吕广霞完成签到,获得积分20
9秒前
三木完成签到 ,获得积分10
10秒前
Teng完成签到 ,获得积分10
10秒前
都是发布了新的文献求助10
11秒前
褚驳完成签到,获得积分10
11秒前
Cloud应助王一刀采纳,获得20
12秒前
KBRS完成签到,获得积分10
12秒前
223311完成签到,获得积分10
13秒前
jjy完成签到,获得积分10
13秒前
橙汁摇一摇完成签到 ,获得积分10
14秒前
奈克罗普陀西斯完成签到,获得积分10
14秒前
15秒前
GGBOND完成签到,获得积分10
15秒前
15秒前
东湾苍梧完成签到,获得积分10
16秒前
先锋老刘001完成签到,获得积分10
17秒前
涂鸦少年完成签到 ,获得积分10
20秒前
Deila完成签到 ,获得积分0
22秒前
星际舟完成签到,获得积分10
24秒前
冷傲迎梦完成签到,获得积分10
24秒前
黑风小妖完成签到,获得积分10
24秒前
汕头凯奇完成签到,获得积分10
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565