Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics have been considered a next-generation molecular diagnosis tool. Single-readout mode has been extensively employed in massive CRISPR/Cas12a-based biosensors. In this work, we propose a one-tube dual-readout biosensor (CRISAT) for the first time for the detection of ultrasensitive nucleic acids and non-nucleic acids developed by harnessing CRISPR-ALP tandem assay. In the presence of a target, Cas12a is activated to randomly cut the single-stranded hyDNA sequence of MB@hyDNA-cALP, thus releasing abundant alkaline phosphatase (ALP) in the supernatant solution. By using 4-aminophenol phosphate as the substrate of ALP,