Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects

脂肪变性 医学 脂肪肝 人口 内科学 环境卫生 纤维化 卡路里 生理学 胃肠病学 老年学 疾病
作者
Luisa Lampignano,Rossella Tatoli,Rossella Donghia,Ilaria Bortone,Fabio Castellana,Roberta Zupo,Madia Lozupone,Francesco Panza,Caterina Conte,Rodolfo Sardone
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:33 (11): 2233-2241 被引量:4
标识
DOI:10.1016/j.numecd.2023.07.009
摘要

Non-alcoholic hepatic steatosis affects 25% of adults worldwide and its prevalence increases with age. There is currently no definitive treatment for NAFLD but international guidelines recommend a lifestyle-based approach, including a healthy diet. The aim of this study was to investigate the interactions between eating habits and the risk of steatosis and/or hepatic fibrosis, using a machine learning approach, in a non-institutionalized elderly population.We recruited 1929 subjects, mean age 74 years, from the population-based Salus in Apulia Study. Dietary habits and the risk of steatosis and hepatic fibrosis were evaluated with a validated food frequency questionnaire, the Fatty Liver Index (FLI) and the FIB-4 score, respectively. Two dietary patterns associated with the risk of steatosis and hepatic fibrosis have been identified. They are both similar to a "western" diet, defined by a greater consumption of refined foods, with a rich content of sugars and saturated fats, and alcoholic and non-alcoholic calorie drinks.This study further supports the concept of diet as a factor that significantly influences the development of the most widespread liver diseases. However, longitudinal studies are needed to better understand the causal effect of the consumption of particular foods on fat accumulation in the liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助俭朴的皮卡丘采纳,获得10
1秒前
kkz发布了新的文献求助30
2秒前
丘比特应助evermore采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
白露为霜完成签到,获得积分10
3秒前
3秒前
嘻嘻哈哈完成签到 ,获得积分10
3秒前
4秒前
所所应助hugeng采纳,获得10
7秒前
7秒前
MYYYZ发布了新的文献求助10
7秒前
棉花糖完成签到 ,获得积分10
7秒前
8秒前
8秒前
longjiafang完成签到,获得积分10
8秒前
嘉禾瑶发布了新的文献求助10
8秒前
FashionBoy应助可乐采纳,获得10
9秒前
Hao发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
阿静发布了新的文献求助10
10秒前
zz发布了新的文献求助10
12秒前
小岛上的赞助滑手完成签到,获得积分10
12秒前
Z.发布了新的文献求助10
13秒前
13秒前
科研通AI5应助秃驴采纳,获得10
13秒前
西红柿太饿完成签到,获得积分10
13秒前
168521kf发布了新的文献求助10
14秒前
14秒前
务实紫发布了新的文献求助10
15秒前
勘大山发布了新的文献求助10
15秒前
FashionBoy应助z1z1z采纳,获得10
15秒前
panfan发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770