Cost-aware scheduling systems for real-time workflows in cloud: An approach based on Genetic Algorithm and Deep Reinforcement Learning

计算机科学 工作流程 云计算 调度(生产过程) 分布式计算 强化学习 工作流管理系统 工作流技术 虚拟机 人工智能 数据库 操作系统 数学优化 数学
作者
Jingwei Zhang,Long Cheng,Cong Liu,Zhiming Zhao,Ying Mao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 120972-120972 被引量:30
标识
DOI:10.1016/j.eswa.2023.120972
摘要

With the development of cloud computing, a growing number of applications are migrating to a cloud environment. In the process, the real-time scheduling of workflows has gradually become a technical challenge, due to the dynamic and uncertain nature of cloud environments and the complex dependencies between sub-tasks of the workflow. Although various methods have been reported up to now, these methods have their respective shortcomings, such as heuristic-based methods are hard to find optimal scheduling scheme and metaheuristic-based methods incur high computational overhead, which often lead to the violation of QoS (Quality of Service) requirements and increases service renting costs of executing workflows. Inspired by the successful application of Deep Reinforcement Learning (DRL) in cloud job scheduling, this paper proposes a real-time workflow scheduling method which combines Genetic Algorithm (GA) and DRL, aiming to reduce both execution cost and response time. To be specific, we design a real-time workflow scheduling algorithm named GA-DQN by combining the global search capability of GA and the environment awareness decision-making capability of DRL to divides scheduling process into two stages. First, the execution scheme of workflow in virtual machine is calculated when workflow arrives. Then, a DRL agent uses this scheme as the feature of workflow to assign workflow to a suitable virtual machine. In this way, the use of DRL to sense environment increases the computational efficiency of GA, and the execution scheme obtained by GA helps DRL to obtain the feature of workflow. On this basis of real world workflow, three groups of simulation experience are carried out to compare GA-DQN with four baseline method which consist of three traditional methods and a state-of-the-art method. The comparison results demonstrate that GA-DQN outperforms the other methods in terms of response time, execution cost, and success rate across different workloads and cloud instance configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林洛沁发布了新的文献求助10
刚刚
从容甜瓜发布了新的文献求助10
刚刚
刚刚
cc与车夫发布了新的文献求助10
刚刚
April发布了新的文献求助10
刚刚
刚刚
929完成签到,获得积分10
1秒前
Naturewoman发布了新的文献求助10
1秒前
1秒前
ezekiet完成签到 ,获得积分10
1秒前
1秒前
2秒前
JamesPei应助meng采纳,获得10
2秒前
大头头不大完成签到,获得积分10
2秒前
3秒前
3秒前
斯文败类应助sure采纳,获得10
4秒前
杨拿铁发布了新的文献求助10
4秒前
小鹿发布了新的文献求助10
4秒前
5秒前
852应助奔跑的大狗熊采纳,获得10
5秒前
6秒前
深情安青应助原初采纳,获得10
6秒前
7秒前
7秒前
田様应助林洛沁采纳,获得10
8秒前
8秒前
8秒前
大蘑菇炒小蘑菇完成签到,获得积分10
8秒前
8秒前
9秒前
greenlu发布了新的文献求助10
9秒前
学海WY完成签到,获得积分10
9秒前
Youngman发布了新的文献求助10
9秒前
阳光完成签到 ,获得积分10
9秒前
linger2发布了新的文献求助10
11秒前
bias发布了新的文献求助10
11秒前
仁者完成签到,获得积分10
11秒前
robin发布了新的文献求助10
12秒前
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584225
求助须知:如何正确求助?哪些是违规求助? 4667748
关于积分的说明 14769485
捐赠科研通 4610238
什么是DOI,文献DOI怎么找? 2529727
邀请新用户注册赠送积分活动 1498707
关于科研通互助平台的介绍 1467270