Cost-aware scheduling systems for real-time workflows in cloud: An approach based on Genetic Algorithm and Deep Reinforcement Learning

计算机科学 工作流程 云计算 调度(生产过程) 分布式计算 强化学习 工作流管理系统 工作流技术 虚拟机 人工智能 数据库 操作系统 数学优化 数学
作者
Jingwei Zhang,Long Cheng,Cong Liu,Zhiming Zhao,Ying Mao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 120972-120972 被引量:19
标识
DOI:10.1016/j.eswa.2023.120972
摘要

With the development of cloud computing, a growing number of applications are migrating to a cloud environment. In the process, the real-time scheduling of workflows has gradually become a technical challenge, due to the dynamic and uncertain nature of cloud environments and the complex dependencies between sub-tasks of the workflow. Although various methods have been reported up to now, these methods have their respective shortcomings, such as heuristic-based methods are hard to find optimal scheduling scheme and metaheuristic-based methods incur high computational overhead, which often lead to the violation of QoS (Quality of Service) requirements and increases service renting costs of executing workflows. Inspired by the successful application of Deep Reinforcement Learning (DRL) in cloud job scheduling, this paper proposes a real-time workflow scheduling method which combines Genetic Algorithm (GA) and DRL, aiming to reduce both execution cost and response time. To be specific, we design a real-time workflow scheduling algorithm named GA-DQN by combining the global search capability of GA and the environment awareness decision-making capability of DRL to divides scheduling process into two stages. First, the execution scheme of workflow in virtual machine is calculated when workflow arrives. Then, a DRL agent uses this scheme as the feature of workflow to assign workflow to a suitable virtual machine. In this way, the use of DRL to sense environment increases the computational efficiency of GA, and the execution scheme obtained by GA helps DRL to obtain the feature of workflow. On this basis of real world workflow, three groups of simulation experience are carried out to compare GA-DQN with four baseline method which consist of three traditional methods and a state-of-the-art method. The comparison results demonstrate that GA-DQN outperforms the other methods in terms of response time, execution cost, and success rate across different workloads and cloud instance configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duanduan发布了新的文献求助10
刚刚
九九完成签到,获得积分10
刚刚
梓然完成签到,获得积分10
刚刚
2秒前
2秒前
wmlsdym完成签到,获得积分10
2秒前
以笑儿过完成签到 ,获得积分10
3秒前
3秒前
聪慧雪糕发布了新的文献求助10
3秒前
3秒前
FashionBoy应助TAOS采纳,获得10
4秒前
4秒前
Lak发布了新的文献求助30
4秒前
wenhuanwenxian完成签到 ,获得积分10
4秒前
白志文完成签到,获得积分10
5秒前
5秒前
5秒前
wmlsdym发布了新的文献求助10
5秒前
lalala应助Kung采纳,获得10
5秒前
yrh发布了新的文献求助10
6秒前
6秒前
爱学习的瑞瑞子完成签到 ,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
顾矜应助黑叔叔采纳,获得30
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得30
8秒前
贰鸟应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
细腻的莫茗完成签到,获得积分20
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
劲秉应助科研通管家采纳,获得50
8秒前
coc发布了新的文献求助10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931