Cost-aware scheduling systems for real-time workflows in cloud: An approach based on Genetic Algorithm and Deep Reinforcement Learning

计算机科学 工作流程 云计算 调度(生产过程) 分布式计算 强化学习 工作流管理系统 工作流技术 虚拟机 人工智能 数据库 操作系统 数学优化 数学
作者
Jingwei Zhang,Long Cheng,Cong Liu,Zhiming Zhao,Ying Mao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 120972-120972 被引量:30
标识
DOI:10.1016/j.eswa.2023.120972
摘要

With the development of cloud computing, a growing number of applications are migrating to a cloud environment. In the process, the real-time scheduling of workflows has gradually become a technical challenge, due to the dynamic and uncertain nature of cloud environments and the complex dependencies between sub-tasks of the workflow. Although various methods have been reported up to now, these methods have their respective shortcomings, such as heuristic-based methods are hard to find optimal scheduling scheme and metaheuristic-based methods incur high computational overhead, which often lead to the violation of QoS (Quality of Service) requirements and increases service renting costs of executing workflows. Inspired by the successful application of Deep Reinforcement Learning (DRL) in cloud job scheduling, this paper proposes a real-time workflow scheduling method which combines Genetic Algorithm (GA) and DRL, aiming to reduce both execution cost and response time. To be specific, we design a real-time workflow scheduling algorithm named GA-DQN by combining the global search capability of GA and the environment awareness decision-making capability of DRL to divides scheduling process into two stages. First, the execution scheme of workflow in virtual machine is calculated when workflow arrives. Then, a DRL agent uses this scheme as the feature of workflow to assign workflow to a suitable virtual machine. In this way, the use of DRL to sense environment increases the computational efficiency of GA, and the execution scheme obtained by GA helps DRL to obtain the feature of workflow. On this basis of real world workflow, three groups of simulation experience are carried out to compare GA-DQN with four baseline method which consist of three traditional methods and a state-of-the-art method. The comparison results demonstrate that GA-DQN outperforms the other methods in terms of response time, execution cost, and success rate across different workloads and cloud instance configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的飞机完成签到,获得积分10
刚刚
1秒前
xxz发布了新的文献求助10
1秒前
2秒前
2秒前
Ava应助曲淳采纳,获得10
2秒前
2秒前
seu000完成签到,获得积分10
3秒前
hj1234发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
慕青应助Ogai采纳,获得10
6秒前
6秒前
7秒前
8秒前
Orange应助Satan采纳,获得10
8秒前
丘比特应助1111采纳,获得10
8秒前
Li发布了新的文献求助10
9秒前
赖雅绿完成签到,获得积分10
9秒前
xxz完成签到,获得积分10
10秒前
是人我吃发布了新的文献求助10
10秒前
10秒前
Hello paper发布了新的文献求助10
10秒前
天空之城发布了新的文献求助30
11秒前
11秒前
星辰大海应助虞丹萱采纳,获得10
11秒前
11秒前
忧虑的夜天完成签到,获得积分20
11秒前
wyh完成签到,获得积分10
12秒前
安静友灵发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
CipherSage应助老坛采纳,获得10
13秒前
罗氏集团发布了新的文献求助10
13秒前
优娜发布了新的文献求助30
14秒前
平淡小凝发布了新的文献求助10
14秒前
ppppp发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007