Cost-aware scheduling systems for real-time workflows in cloud: An approach based on Genetic Algorithm and Deep Reinforcement Learning

计算机科学 工作流程 云计算 调度(生产过程) 分布式计算 强化学习 工作流管理系统 工作流技术 虚拟机 人工智能 数据库 操作系统 数学优化 数学
作者
Jingwei Zhang,Long Cheng,Cong Liu,Zhiming Zhao,Ying Mao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 120972-120972 被引量:19
标识
DOI:10.1016/j.eswa.2023.120972
摘要

With the development of cloud computing, a growing number of applications are migrating to a cloud environment. In the process, the real-time scheduling of workflows has gradually become a technical challenge, due to the dynamic and uncertain nature of cloud environments and the complex dependencies between sub-tasks of the workflow. Although various methods have been reported up to now, these methods have their respective shortcomings, such as heuristic-based methods are hard to find optimal scheduling scheme and metaheuristic-based methods incur high computational overhead, which often lead to the violation of QoS (Quality of Service) requirements and increases service renting costs of executing workflows. Inspired by the successful application of Deep Reinforcement Learning (DRL) in cloud job scheduling, this paper proposes a real-time workflow scheduling method which combines Genetic Algorithm (GA) and DRL, aiming to reduce both execution cost and response time. To be specific, we design a real-time workflow scheduling algorithm named GA-DQN by combining the global search capability of GA and the environment awareness decision-making capability of DRL to divides scheduling process into two stages. First, the execution scheme of workflow in virtual machine is calculated when workflow arrives. Then, a DRL agent uses this scheme as the feature of workflow to assign workflow to a suitable virtual machine. In this way, the use of DRL to sense environment increases the computational efficiency of GA, and the execution scheme obtained by GA helps DRL to obtain the feature of workflow. On this basis of real world workflow, three groups of simulation experience are carried out to compare GA-DQN with four baseline method which consist of three traditional methods and a state-of-the-art method. The comparison results demonstrate that GA-DQN outperforms the other methods in terms of response time, execution cost, and success rate across different workloads and cloud instance configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王涴宁完成签到,获得积分10
刚刚
1秒前
科研小白完成签到 ,获得积分10
1秒前
不想长大完成签到 ,获得积分10
1秒前
nuonuomimi完成签到,获得积分10
1秒前
MX001完成签到,获得积分10
1秒前
dxftx完成签到,获得积分10
2秒前
2秒前
开心妍完成签到 ,获得积分10
2秒前
silentJeremy发布了新的文献求助10
3秒前
3秒前
kingwill应助Gilana采纳,获得20
3秒前
3秒前
一个左正蹬完成签到,获得积分10
4秒前
三桥完成签到,获得积分10
4秒前
5秒前
supertkeb完成签到,获得积分10
5秒前
ZY完成签到,获得积分10
6秒前
庄怀逸完成签到 ,获得积分10
7秒前
wenwen完成签到,获得积分10
7秒前
8秒前
fuguier发布了新的文献求助10
8秒前
山水完成签到,获得积分10
9秒前
9秒前
木木杉完成签到 ,获得积分10
9秒前
卓涵柏发布了新的文献求助10
9秒前
聪慧咖啡豆完成签到,获得积分10
10秒前
流白完成签到,获得积分10
11秒前
不想上班了完成签到,获得积分10
12秒前
酷炫橘子完成签到,获得积分10
12秒前
SYLH应助Gilana采纳,获得10
12秒前
肃肃其羽完成签到 ,获得积分10
12秒前
Libeau完成签到,获得积分10
13秒前
13秒前
英俊的铭应助silentJeremy采纳,获得30
13秒前
宇文青寒完成签到,获得积分10
14秒前
15秒前
coco完成签到,获得积分10
16秒前
无花果粒橙完成签到,获得积分10
17秒前
文小杰完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890