Cost-aware scheduling systems for real-time workflows in cloud: An approach based on Genetic Algorithm and Deep Reinforcement Learning

计算机科学 工作流程 云计算 调度(生产过程) 分布式计算 强化学习 工作流管理系统 工作流技术 虚拟机 人工智能 数据库 操作系统 数学优化 数学
作者
Jingwei Zhang,Long Cheng,Cong Liu,Zhiming Zhao,Ying Mao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 120972-120972 被引量:19
标识
DOI:10.1016/j.eswa.2023.120972
摘要

With the development of cloud computing, a growing number of applications are migrating to a cloud environment. In the process, the real-time scheduling of workflows has gradually become a technical challenge, due to the dynamic and uncertain nature of cloud environments and the complex dependencies between sub-tasks of the workflow. Although various methods have been reported up to now, these methods have their respective shortcomings, such as heuristic-based methods are hard to find optimal scheduling scheme and metaheuristic-based methods incur high computational overhead, which often lead to the violation of QoS (Quality of Service) requirements and increases service renting costs of executing workflows. Inspired by the successful application of Deep Reinforcement Learning (DRL) in cloud job scheduling, this paper proposes a real-time workflow scheduling method which combines Genetic Algorithm (GA) and DRL, aiming to reduce both execution cost and response time. To be specific, we design a real-time workflow scheduling algorithm named GA-DQN by combining the global search capability of GA and the environment awareness decision-making capability of DRL to divides scheduling process into two stages. First, the execution scheme of workflow in virtual machine is calculated when workflow arrives. Then, a DRL agent uses this scheme as the feature of workflow to assign workflow to a suitable virtual machine. In this way, the use of DRL to sense environment increases the computational efficiency of GA, and the execution scheme obtained by GA helps DRL to obtain the feature of workflow. On this basis of real world workflow, three groups of simulation experience are carried out to compare GA-DQN with four baseline method which consist of three traditional methods and a state-of-the-art method. The comparison results demonstrate that GA-DQN outperforms the other methods in terms of response time, execution cost, and success rate across different workloads and cloud instance configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sia发布了新的文献求助10
2秒前
Orange应助白贝采纳,获得10
2秒前
2秒前
3秒前
小6s完成签到,获得积分10
3秒前
王某发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
4秒前
斯文败类应助AoAoo采纳,获得10
5秒前
汉堡包应助暴躁的惜筠采纳,获得10
5秒前
lm完成签到,获得积分10
5秒前
杨桃发布了新的文献求助10
5秒前
肥胖的红薯完成签到 ,获得积分10
6秒前
owoow发布了新的文献求助10
6秒前
王某完成签到,获得积分10
8秒前
爱lx发布了新的文献求助10
9秒前
乐666完成签到,获得积分10
9秒前
orixero应助点点采纳,获得30
9秒前
syhjxk完成签到,获得积分10
9秒前
爱静静应助hm1999采纳,获得10
10秒前
orixero应助Frozen采纳,获得30
10秒前
litbla完成签到,获得积分10
11秒前
zb完成签到,获得积分10
11秒前
荭筱葒完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
Ail完成签到,获得积分10
15秒前
白贝完成签到,获得积分10
16秒前
16秒前
墩墩应助风清扬采纳,获得10
19秒前
白贝发布了新的文献求助10
19秒前
前程似锦完成签到 ,获得积分10
20秒前
20秒前
SciGPT应助owoow采纳,获得10
21秒前
23秒前
科研通AI5应助数树采纳,获得10
23秒前
CodeCraft应助在途中采纳,获得10
25秒前
雪白发卡完成签到,获得积分10
25秒前
润泽无语发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578