Location Privacy Protection for UAVs in Package Delivery and IoT Data Collection

计算机科学 对手 差别隐私 物联网 计算机网络 数据收集 高斯分布 网络数据包 编码 数据聚合器 计算机安全 信息隐私 实时计算 数据挖掘 无线传感器网络 统计 数学 生物化学 物理 化学 量子力学 基因
作者
Saeede Enayati,Dennis Goeckel,Amir Houmansadr,Hossein Pishro-Nik
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2023.3293755
摘要

Unmanned aerial vehicles (UAVs) are well-known for violating citizens privacy either inadvertently or deliberately. However, UAVs could be victims of privacy violations themselves in the sense that an adversary observing a UAV can infer its destination. This paper proposes several privacy-preserving mechanisms (PPMs) for protecting a UAV’s location privacy. In particular, we address the privacy protection problem in two major UAV applications that require significantly different measures: (i) package delivery, and (ii) Internet of Things (IoT) data collection. In the package delivery application, we propose two different PPMs to randomize the UAV’s trajectory such that the observing adversary is confused about the UAV’s destination; we provide privacy guarantees and analyze the trade-off with energy consumption. In the IoT data collection scenario, the UAV is not necessarily required to hover exactly above the IoT device; hence, we propose a different PPM according to which the UAV chooses a random spot around the IoT device for data collection. Then, considering a minimum mean squared error (MMSE) criterion, we obtain the privacy leakage to the adversary. We also analyze the mean peak age of information (PAoI) of the network and show that the proposed method does not degrade the mean PAoI significantly. Finally, considering the limitations of the MMSE approach for some applications, we also develop a differential privacy (DP)-based counterpart for this PPM. We observe that the mean PAoI degrades significantly in Laplacian DP but is acceptable in Gaussian DP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
9577发布了新的文献求助10
刚刚
顾矜应助寒树采纳,获得10
刚刚
1秒前
liushuaihao完成签到,获得积分20
1秒前
Ryan完成签到,获得积分10
1秒前
科研小蔡发布了新的文献求助10
1秒前
2秒前
3秒前
liushuaihao发布了新的文献求助10
4秒前
5秒前
凹凸曼变森完成签到,获得积分10
5秒前
上官若男应助Caesar采纳,获得10
5秒前
xiaojie2024完成签到,获得积分10
5秒前
梦想飞翔发布了新的文献求助10
5秒前
壮观黑裤发布了新的文献求助10
6秒前
充电宝应助132456采纳,获得10
7秒前
7秒前
小巧雁菱发布了新的文献求助10
8秒前
8秒前
9秒前
Akim应助fox采纳,获得10
10秒前
9577完成签到,获得积分10
11秒前
789466发布了新的文献求助10
12秒前
panda完成签到,获得积分10
12秒前
14秒前
春和景明发布了新的文献求助10
14秒前
天天快乐应助iwersonshmtu采纳,获得30
14秒前
xuanxuan完成签到 ,获得积分10
15秒前
Mathilda完成签到,获得积分10
18秒前
小懒猪完成签到,获得积分10
18秒前
你好CDY完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
Be_Miracle完成签到,获得积分10
19秒前
19秒前
jialing完成签到 ,获得积分10
19秒前
123456完成签到,获得积分10
20秒前
Tu发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187