摘要
The many branches of nanoscience have made significant strides and advancements during the past ten years, as has the entire scientific community. Zirconia nanoparticles have several uses as adsorbents, nanosensors, nanocatalysts, and other types of nanomaterials. Their outstanding biomedical uses in dental care and drug delivery, as well as their intriguing biological characteristics, such as their anti-cancer, anti-microbial, and antioxidant activity, have further encouraged researchers to investigate their physicochemical properties using various synthetic pathways. Due to the popularity of zirconia-based nanomaterials, the current research comprehensively examines several synthesis techniques and their effects on the composition, dimensions, forms, and morphologies of these nanomaterials. In general, there are two methods for creating zirconia nanoparticles: chemical synthesis, which uses hydrothermal, solvothermal, sol-gel, microwave, solution combustion, and co-precipitation processes; and a greener method, which uses bacteria, fungi, and plant components. The aforementioned techniques have been evaluated in the present review for achieving particular phases and shapes. A thorough analysis of zirconia-based nanomaterial's uses is also included in the review. Furthermore, comparisons with their equivalent composites for various applications as well as the influence of particular phases and morphologies have been added. The final portion includes the summary, future outlook, and potential application.