Short-term Wind Power Prediction Method Based on Genetic Algorithm Optimized XGBoost Regression Model

遗传算法 算法 计算机科学 期限(时间) 随机森林 回归分析 风速 梯度升压 支持向量机 均方误差 统计 数学优化 数学 人工智能 机器学习 量子力学 物理 气象学
作者
Xiangcheng Li,Jialong Wang,Zhirui Geng,Yang Jin,Jiawei Xu
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2527 (1): 012061-012061
标识
DOI:10.1088/1742-6596/2527/1/012061
摘要

Abstract In order to solve the problem of accuracy and rapidity of short-term prediction of wind power output, the eXtreme Gradient Boosting (XGBoost) regression model is used in this paper to predict wind power output. For the models commonly used at the present stage, such as Long Short Term Memory (LSTM), random forest and ordinary XGBoost model, the modelling time is long, and the accuracy is not enough. In this paper, a genetic algorithm (GA) is introduced to improve the accuracy and speed of prediction of the XGBoost regression model. Firstly, the learning rate of the XGBoost model is optimized by using the good searching ability and flexibility of the genetic algorithm. Then variable weight combination prediction is carried out. The objective function for this problem is the mean square error that occurs between the value that is predicted and the value that actually occurs in the training set. GA is responsible for determining the model’s final weight. The historical output data of the wind plant is used in this paper to verify the XGBoost regression model based on a genetic algorithm and get the predicted value, which is then compared with the prediction results of LSTM and random forest algorithm. Example simulation and analysis show that the XGBoost regression model optimized by the genetic algorithm can be more significantly in solving the accuracy and rapidity of the prediction of short-term wind power output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly发布了新的文献求助10
刚刚
2秒前
超级泽洋发布了新的文献求助20
2秒前
辣手摧花526完成签到,获得积分10
2秒前
4秒前
Carissa完成签到,获得积分10
4秒前
雁兰完成签到,获得积分10
4秒前
4秒前
young发布了新的文献求助10
6秒前
领导范儿应助浩浩采纳,获得10
6秒前
6秒前
莫斯卡托应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
毛豆爸爸应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
ddly完成签到 ,获得积分10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
qwe发布了新的文献求助10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
HEIKU应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Yang应助luanzhaohui采纳,获得10
8秒前
深情安青应助十七采纳,获得10
9秒前
芒芒发paper完成签到 ,获得积分10
9秒前
桐桐应助清秀的毛巾采纳,获得10
11秒前
Mellow完成签到 ,获得积分10
12秒前
Aaron发布了新的文献求助10
12秒前
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721