Short-term Wind Power Prediction Method Based on Genetic Algorithm Optimized XGBoost Regression Model

遗传算法 算法 计算机科学 期限(时间) 随机森林 回归分析 风速 梯度升压 支持向量机 均方误差 统计 数学优化 数学 人工智能 机器学习 物理 量子力学 气象学
作者
Xiangcheng Li,Jialong Wang,Zhirui Geng,Yang Jin,Jiawei Xu
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2527 (1): 012061-012061
标识
DOI:10.1088/1742-6596/2527/1/012061
摘要

Abstract In order to solve the problem of accuracy and rapidity of short-term prediction of wind power output, the eXtreme Gradient Boosting (XGBoost) regression model is used in this paper to predict wind power output. For the models commonly used at the present stage, such as Long Short Term Memory (LSTM), random forest and ordinary XGBoost model, the modelling time is long, and the accuracy is not enough. In this paper, a genetic algorithm (GA) is introduced to improve the accuracy and speed of prediction of the XGBoost regression model. Firstly, the learning rate of the XGBoost model is optimized by using the good searching ability and flexibility of the genetic algorithm. Then variable weight combination prediction is carried out. The objective function for this problem is the mean square error that occurs between the value that is predicted and the value that actually occurs in the training set. GA is responsible for determining the model’s final weight. The historical output data of the wind plant is used in this paper to verify the XGBoost regression model based on a genetic algorithm and get the predicted value, which is then compared with the prediction results of LSTM and random forest algorithm. Example simulation and analysis show that the XGBoost regression model optimized by the genetic algorithm can be more significantly in solving the accuracy and rapidity of the prediction of short-term wind power output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助刘安娜采纳,获得10
刚刚
刚刚
lijing123发布了新的文献求助10
刚刚
1秒前
1秒前
小管完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
福子完成签到,获得积分10
3秒前
帅的一批完成签到,获得积分10
3秒前
猫科动物完成签到,获得积分10
4秒前
4秒前
依古比古发布了新的文献求助10
4秒前
5秒前
AMMMMM完成签到,获得积分10
5秒前
执着涵菱发布了新的文献求助10
5秒前
5秒前
aaaaa发布了新的文献求助10
6秒前
6秒前
Ryoma完成签到,获得积分10
6秒前
科研通AI2S应助llullalla采纳,获得10
7秒前
Yuanyuan发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
蒸馒头争气完成签到,获得积分10
7秒前
思源应助怡然的煜城采纳,获得80
8秒前
Billy发布了新的文献求助10
8秒前
8秒前
热心的水瑶完成签到,获得积分20
9秒前
水何澹澹完成签到,获得积分0
10秒前
随意发布了新的文献求助10
10秒前
lvjiahui发布了新的文献求助10
10秒前
FashionBoy应助echo采纳,获得10
10秒前
10秒前
10秒前
miumiu发布了新的文献求助10
11秒前
桐桐应助热心的棒棒糖采纳,获得10
11秒前
粉色的小天鹅完成签到,获得积分20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198